Advertisement

Journal of Materials Science

, Volume 45, Issue 10, pp 2675–2680 | Cite as

Glass fiber reinforced rigid polyurethane foams

  • S. H. Kim
  • H. C. Park
  • H. M. Jeong
  • B. K. Kim
Article

Abstract

Rigid polyurethane foam (RPUF)/glass fiber composites have been fabricated from glass fiber, polymeric 4,4′-di-phenylmethane diisocyanate (PMDI) and polypropylene glycols (PPG) using HFC 365mfc as blowing agent. Thermal conductivity, glass transition and decomposition temperatures as well as the mechanical strengths of the foam increased with the addition of glass fiber. This indicates that an optimum fiber content should depend on the balance between the mechanical reinforcement and thermal insulation.The results were interpreted in terms of cell size, closed cell content, density, fiber dispersion and a simple series model for heat transfer of the composite foam.

Keywords

Foam Glass Fiber Compression Strength Foam Density Composite Foam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

This research has been supported by the National Core Research Center and PNU-IFAM JRC both organized at PNU.

References

  1. 1.
    You M, Zhang XX, Wang JP, Wang XC (2009) J Mater Sci 44:3141. doi: 10.1007/s10853-009-3418-7 CrossRefADSGoogle Scholar
  2. 2.
    Dweib MA, Vahlund CF, Bradaigh CM (2000) Compos A Appl Sci Manuf 31:235CrossRefGoogle Scholar
  3. 3.
    Song B, Lu WY, Syn CJ, Chen W (2009) J Mater Sci 44(2):351. doi: 10.1007/s10853-008-3105-0 CrossRefADSGoogle Scholar
  4. 4.
    Cao X, Lee LJ, Widya TC (2005) Polymer 46:775CrossRefGoogle Scholar
  5. 5.
    Mondal P, Khakhar DV (2004) Macromol Symp 216:241CrossRefGoogle Scholar
  6. 6.
    Li XB, Cao HB, Guan YT (2006) J Appl Polym Sci 102:4149CrossRefGoogle Scholar
  7. 7.
    Antolini B, Bianchi F, Bottazzi M, Careri M, Musci M (2004) Chromatographia 60:323CrossRefGoogle Scholar
  8. 8.
    Heintz AM, Duffy DJ, Hsu SL, Suen W, Chu W, Paul CW (2003) Macromolecules 36:2695CrossRefADSGoogle Scholar
  9. 9.
    Seo WJ, Jung HC, Hyun JC, Kim WN, Lee YB, Choe KH, Kim SB (2003) J Appl Polym Sci 90:12CrossRefGoogle Scholar
  10. 10.
    Lim H, Kim SH, Kim BK (2008) Polym Adv Tech 19:1729CrossRefGoogle Scholar
  11. 11.
    Lim H, Kim SH, Kim BK (2008) J Appl Polym Sci 110:49CrossRefGoogle Scholar
  12. 12.
    Lim H, Kim SH, Kim BK (2008) Macromol Res 16:467Google Scholar
  13. 13.
    Lim H, Kim SH, Kim BK (2008) Express Polym Lett 2:194CrossRefGoogle Scholar
  14. 14.
    Kim SH, Lim H, Song JC, Kim BK (2008) J Macromol Sci P&AC 45:1Google Scholar
  15. 15.
    Karger-Kocsis J, Harmia T, Czigany T (1995) Compos Sci Technol 54:287CrossRefGoogle Scholar
  16. 16.
    Wilberforce S, Hashemi S (2009) J Mater Sci 44(5):1333. doi: 10.1007/s10853-008-3233-6 CrossRefADSGoogle Scholar
  17. 17.
    Seo WJ, Park JH, Sung YT, Hwang DH, Kim WN, Lee HS (2004) J Appl Polym Sci 93:2334CrossRefGoogle Scholar
  18. 18.
    Xu Z, Tang X, Gu A, Fang Z (2007) J Appl Polym Sci 106:439CrossRefGoogle Scholar
  19. 19.
    Oertel G (2004) Polyurethane handbook. Gardner Publications, New YorkGoogle Scholar
  20. 20.
    Harikrishnana G, Umasankar Patroa T, Khakhar DV (2007) Carbon 45(3):531CrossRefGoogle Scholar
  21. 21.
    Szycher M (1999) Szycher’s handbook of polyurethanes. CRC Press, New YorkGoogle Scholar
  22. 22.
    Bird RB, Stewart WE, Lightfoot EN (2006) Transport phenomena. Wiley, New YorkGoogle Scholar
  23. 23.
    Wang M, Pan N (2008) Int J Heat Mass Transf 51:1325MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • S. H. Kim
    • 1
  • H. C. Park
    • 2
  • H. M. Jeong
    • 3
  • B. K. Kim
    • 1
  1. 1.Department of Polymer Science and EngineeringPusan National UniversityBusanKorea
  2. 2.School of Materials Science and EngineeringPusan National UniversityBusanKorea
  3. 3.Department of ChemistryUniversity of UlsanUlsanKorea

Personalised recommendations