Journal of Materials Science

, Volume 45, Issue 10, pp 2574–2579 | Cite as

Hierarchical constraint distribution of ultra-high molecular weight polyethylene fibers with different preparation methods

  • Masaki Kakiage
  • Takuya Tamura
  • Syozo Murakami
  • Hiroshi Takahashi
  • Takeshi Yamanobe
  • Hiroki Uehara


The hierarchical constraint characteristics of ultra-high molecular weight polyethylene (UHMW-PE) fibers with different structures were evaluated by in situ wide-angle X-ray diffraction (WAXD) measurement during heating. Two UHMW-PE fibers were used in this study, an original gel-spun fiber and a processed fiber that was tensile-drawn from the original fiber above the static equilibrium melting temperature of PE. A difference in fiber processing induced change in constraint distribution attributed to morphological heterogeneity. The original gel-spun fiber, which had a heterogeneous structure, induced the constraint distribution because of the obvious existence of skin and core. In contrast, the tensile-drawn fiber, which had a homogeneous structure formed by the fusion adhesion between twisted single yarn surfaces, depressed the constraint distribution. These results demonstrate that a difference in fiber processing induces change in hierarchical characteristics with different structural dimensions.


Constraint State WAXD Hexagonal Phase Orthorhombic Phase Phase Transition Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Synchrotron WAXD measurements were performed under the approval of the Photon Factory Program Advisory Committee (Proposal 2004G265). This work was partly supported by a Grant-in-Aid for the Japan Society for the Promotion of Science (JSPS) Fellows and the Industrial Technology Research Grant Program from the New Energy and Industrial Technology Development Organization (NEDO) of Japan. M. Kakiage expresses his gratitude for the JSPS Research Fellowships for Young Scientists.


  1. 1.
    Smith P, Lemstra PJ (1980) J Mater Sci 15:505. doi: 10.1007/BF00551705 CrossRefADSGoogle Scholar
  2. 2.
    Pennings AJ, Zwijnenburg A (1979) J Polym Sci Polym Phys Ed 17:1011CrossRefGoogle Scholar
  3. 3.
    Murthy NS, Correale ST, Kavesh S (1990) Polym Commun 31:50Google Scholar
  4. 4.
    Rastogi S, Odell JA (1993) Polymer 34:1523CrossRefGoogle Scholar
  5. 5.
    Tsubakihara S, Nakamura A, Yasuniwa M (1996) Polym J 28:489CrossRefGoogle Scholar
  6. 6.
    Uehara H, Kanamoto T, Kawaguchi A, Murakami S (1996) Macromolecules 29:1540CrossRefADSGoogle Scholar
  7. 7.
    Tashiro K, Sasaki S, Kobayashi M (1996) Macromolecules 29:7460CrossRefADSGoogle Scholar
  8. 8.
    Kuwabara K, Horii F (1999) Macromolecules 32:5600CrossRefADSGoogle Scholar
  9. 9.
    Kwon YK, Boller A, Pyda M, Wunderlich B (2000) Polymer 41:6237CrossRefGoogle Scholar
  10. 10.
    Rein DM, Shavit L, Khalfin RL, Cohen Y, Terry A, Rastogi S (2004) J Polym Sci B Polym Phys 42:53CrossRefGoogle Scholar
  11. 11.
    Ratner S, Weinberg A, Wachtel E, Moret PM, Marom G (2004) Macromol Rapid Commun 25:1150CrossRefGoogle Scholar
  12. 12.
    Watanabe S, Dybal J, Tashiro K, Ozaki Y (2006) Polymer 47:2010CrossRefGoogle Scholar
  13. 13.
    Kakiage M, Sekiya M, Yamanobe T, Komoto T, Sasaki S, Murakami S, Uehara H (2008) J Phys Chem B 112:5311CrossRefPubMedGoogle Scholar
  14. 14.
    Uehara H, Kakiage M, Yamanobe T, Komoto T, Murakami S (2006) Macromol Rapid Commun 27:966CrossRefGoogle Scholar
  15. 15.
    Kakiage M, Yamanobe T, Komoto T, Murakami S, Uehara H (2006) J Polym Sci B Polym Phys 44:2455CrossRefGoogle Scholar
  16. 16.
    Kakiage M, Yamanobe T, Komoto T, Murakami S, Uehara H (2006) Polymer 47:8053CrossRefGoogle Scholar
  17. 17.
    Wunderlich B, Arakawa T (1964) J Polym Sci A Polym Chem 2:3697Google Scholar
  18. 18.
    Bassett DC, Turner B (1972) Nature (London) Phys Sci 240:146ADSGoogle Scholar
  19. 19.
    Asahi T (1984) J Polym Sci Polym Phys Ed 22:175CrossRefGoogle Scholar
  20. 20.
    Rastogi S, Kurelec L, Lemstra PJ (1998) Macromolecules 31:5022CrossRefPubMedADSGoogle Scholar
  21. 21.
    Kurelec L, Rastogi S, Meier RJ, Lemstra PJ (2000) Macromolecules 33:5593CrossRefADSGoogle Scholar
  22. 22.
    Lacroix Fv, Loos J, Schulte K (1999) Polymer 40:843CrossRefGoogle Scholar
  23. 23.
    Bashir Z, Keller A (1989) Colloid Polym Sci 267:116CrossRefGoogle Scholar
  24. 24.
    Uehara H, Nakae M, Kanamoto T, Zachariades AE, Porter RS (1999) Macromolecules 32:2761CrossRefADSGoogle Scholar
  25. 25.
    Nakae M, Uehara H, Kanamoto T, Ohama T, Porter RS (1999) J Polym Sci B Polym Phys 37:1921CrossRefGoogle Scholar
  26. 26.
    Nakae M, Uehara H, Kanamoto T, Zachariades AE, Porter RS (2000) Macromolecules 33:2632CrossRefADSGoogle Scholar
  27. 27.
    Kakiage M, Sekiya M, Yamanobe T, Komoto T, Sasaki S, Murakami S, Uehara H (2007) Polymer 48:7385CrossRefGoogle Scholar
  28. 28.
    Kakiage M, Uehara H, Yamanobe T (2008) Macromol Rapid Commun 29:1571CrossRefGoogle Scholar
  29. 29.
    Riekel C, Cedola A, Heidelbach F, Wagner K (1997) Macromolecules 30:1033CrossRefADSGoogle Scholar
  30. 30.
    Uehara H, Yoshida R, Kakiage M, Yamanobe T, Komoto T (2006) Ind Eng Chem Res 45:7801CrossRefGoogle Scholar
  31. 31.
    Capiati NJ, Porter RS (1975) J Mater Sci 10:1671. doi: 10.1007/BF00554928 CrossRefADSGoogle Scholar
  32. 32.
    Cohen Y, Rein DM, Vaykhansky LE, Porter RS (1999) Compos Part A Appl Sci Manuf 30:19CrossRefGoogle Scholar
  33. 33.
    Matabola KP, De Vries AR, Moolman FS, Luyt AS (2009) J Mater Sci 44:6213. doi: 10.1007/s10853-009-3792-1 CrossRefGoogle Scholar
  34. 34.
    Hine PJ, Ward IM, Olley RH, Bassett DC (1993) J Mater Sci 28:316. doi: 10.1007/BF00357801 CrossRefADSGoogle Scholar
  35. 35.
    Morye SS, Hine PJ, Duckett RA, Carr DJ, Ward IM (1999) Compos Part A Appl Sci Manuf 30:649CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Masaki Kakiage
    • 1
    • 4
  • Takuya Tamura
    • 1
  • Syozo Murakami
    • 2
  • Hiroshi Takahashi
    • 3
  • Takeshi Yamanobe
    • 1
  • Hiroki Uehara
    • 1
  1. 1.Department of Chemistry and Chemical BiologyGunma UniversityGunmaJapan
  2. 2.Heian Jogakuin UniversityOsakaJapan
  3. 3.Department of Chemistry and Chemical Biology, Biophysics LaboratoryGraduate School of Engineering, Gunma UniversityMaebashiJapan
  4. 4.Department of Applied ChemistrySaitama UniversitySaitamaJapan

Personalised recommendations