Skip to main content
Log in

Hierarchical constraint distribution of ultra-high molecular weight polyethylene fibers with different preparation methods

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The hierarchical constraint characteristics of ultra-high molecular weight polyethylene (UHMW-PE) fibers with different structures were evaluated by in situ wide-angle X-ray diffraction (WAXD) measurement during heating. Two UHMW-PE fibers were used in this study, an original gel-spun fiber and a processed fiber that was tensile-drawn from the original fiber above the static equilibrium melting temperature of PE. A difference in fiber processing induced change in constraint distribution attributed to morphological heterogeneity. The original gel-spun fiber, which had a heterogeneous structure, induced the constraint distribution because of the obvious existence of skin and core. In contrast, the tensile-drawn fiber, which had a homogeneous structure formed by the fusion adhesion between twisted single yarn surfaces, depressed the constraint distribution. These results demonstrate that a difference in fiber processing induces change in hierarchical characteristics with different structural dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Smith P, Lemstra PJ (1980) J Mater Sci 15:505. doi:10.1007/BF00551705

    Article  CAS  ADS  Google Scholar 

  2. Pennings AJ, Zwijnenburg A (1979) J Polym Sci Polym Phys Ed 17:1011

    Article  CAS  Google Scholar 

  3. Murthy NS, Correale ST, Kavesh S (1990) Polym Commun 31:50

    CAS  Google Scholar 

  4. Rastogi S, Odell JA (1993) Polymer 34:1523

    Article  CAS  Google Scholar 

  5. Tsubakihara S, Nakamura A, Yasuniwa M (1996) Polym J 28:489

    Article  CAS  Google Scholar 

  6. Uehara H, Kanamoto T, Kawaguchi A, Murakami S (1996) Macromolecules 29:1540

    Article  CAS  ADS  Google Scholar 

  7. Tashiro K, Sasaki S, Kobayashi M (1996) Macromolecules 29:7460

    Article  CAS  ADS  Google Scholar 

  8. Kuwabara K, Horii F (1999) Macromolecules 32:5600

    Article  CAS  ADS  Google Scholar 

  9. Kwon YK, Boller A, Pyda M, Wunderlich B (2000) Polymer 41:6237

    Article  CAS  Google Scholar 

  10. Rein DM, Shavit L, Khalfin RL, Cohen Y, Terry A, Rastogi S (2004) J Polym Sci B Polym Phys 42:53

    Article  CAS  Google Scholar 

  11. Ratner S, Weinberg A, Wachtel E, Moret PM, Marom G (2004) Macromol Rapid Commun 25:1150

    Article  CAS  Google Scholar 

  12. Watanabe S, Dybal J, Tashiro K, Ozaki Y (2006) Polymer 47:2010

    Article  CAS  Google Scholar 

  13. Kakiage M, Sekiya M, Yamanobe T, Komoto T, Sasaki S, Murakami S, Uehara H (2008) J Phys Chem B 112:5311

    Article  CAS  PubMed  Google Scholar 

  14. Uehara H, Kakiage M, Yamanobe T, Komoto T, Murakami S (2006) Macromol Rapid Commun 27:966

    Article  CAS  Google Scholar 

  15. Kakiage M, Yamanobe T, Komoto T, Murakami S, Uehara H (2006) J Polym Sci B Polym Phys 44:2455

    Article  CAS  Google Scholar 

  16. Kakiage M, Yamanobe T, Komoto T, Murakami S, Uehara H (2006) Polymer 47:8053

    Article  CAS  Google Scholar 

  17. Wunderlich B, Arakawa T (1964) J Polym Sci A Polym Chem 2:3697

    Google Scholar 

  18. Bassett DC, Turner B (1972) Nature (London) Phys Sci 240:146

    CAS  ADS  Google Scholar 

  19. Asahi T (1984) J Polym Sci Polym Phys Ed 22:175

    Article  CAS  Google Scholar 

  20. Rastogi S, Kurelec L, Lemstra PJ (1998) Macromolecules 31:5022

    Article  CAS  PubMed  ADS  Google Scholar 

  21. Kurelec L, Rastogi S, Meier RJ, Lemstra PJ (2000) Macromolecules 33:5593

    Article  CAS  ADS  Google Scholar 

  22. Lacroix Fv, Loos J, Schulte K (1999) Polymer 40:843

    Article  CAS  Google Scholar 

  23. Bashir Z, Keller A (1989) Colloid Polym Sci 267:116

    Article  CAS  Google Scholar 

  24. Uehara H, Nakae M, Kanamoto T, Zachariades AE, Porter RS (1999) Macromolecules 32:2761

    Article  CAS  ADS  Google Scholar 

  25. Nakae M, Uehara H, Kanamoto T, Ohama T, Porter RS (1999) J Polym Sci B Polym Phys 37:1921

    Article  CAS  Google Scholar 

  26. Nakae M, Uehara H, Kanamoto T, Zachariades AE, Porter RS (2000) Macromolecules 33:2632

    Article  CAS  ADS  Google Scholar 

  27. Kakiage M, Sekiya M, Yamanobe T, Komoto T, Sasaki S, Murakami S, Uehara H (2007) Polymer 48:7385

    Article  CAS  Google Scholar 

  28. Kakiage M, Uehara H, Yamanobe T (2008) Macromol Rapid Commun 29:1571

    Article  CAS  Google Scholar 

  29. Riekel C, Cedola A, Heidelbach F, Wagner K (1997) Macromolecules 30:1033

    Article  CAS  ADS  Google Scholar 

  30. Uehara H, Yoshida R, Kakiage M, Yamanobe T, Komoto T (2006) Ind Eng Chem Res 45:7801

    Article  CAS  Google Scholar 

  31. Capiati NJ, Porter RS (1975) J Mater Sci 10:1671. doi:10.1007/BF00554928

    Article  CAS  ADS  Google Scholar 

  32. Cohen Y, Rein DM, Vaykhansky LE, Porter RS (1999) Compos Part A Appl Sci Manuf 30:19

    Article  Google Scholar 

  33. Matabola KP, De Vries AR, Moolman FS, Luyt AS (2009) J Mater Sci 44:6213. doi:10.1007/s10853-009-3792-1

    Article  CAS  Google Scholar 

  34. Hine PJ, Ward IM, Olley RH, Bassett DC (1993) J Mater Sci 28:316. doi:10.1007/BF00357801

    Article  CAS  ADS  Google Scholar 

  35. Morye SS, Hine PJ, Duckett RA, Carr DJ, Ward IM (1999) Compos Part A Appl Sci Manuf 30:649

    Article  Google Scholar 

Download references

Acknowledgements

Synchrotron WAXD measurements were performed under the approval of the Photon Factory Program Advisory Committee (Proposal 2004G265). This work was partly supported by a Grant-in-Aid for the Japan Society for the Promotion of Science (JSPS) Fellows and the Industrial Technology Research Grant Program from the New Energy and Industrial Technology Development Organization (NEDO) of Japan. M. Kakiage expresses his gratitude for the JSPS Research Fellowships for Young Scientists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroki Uehara.

Additional information

Masaki Kakiage is a Research Fellow of the Japan Society for the Promotion of Science.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kakiage, M., Tamura, T., Murakami, S. et al. Hierarchical constraint distribution of ultra-high molecular weight polyethylene fibers with different preparation methods. J Mater Sci 45, 2574–2579 (2010). https://doi.org/10.1007/s10853-010-4228-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4228-7

Keywords

Navigation