Journal of Materials Science

, Volume 45, Issue 7, pp 1830–1836 | Cite as

Microstructure and grindability of as-cast Ti–Sn alloys

  • Hsueh-Chuan Hsu
  • Hsi-Chen Lin
  • Shih-Ching Wu
  • Yu-Sheng Hong
  • Wen-Fu Ho


In this study, the structure, microhardness, and grindability of a series of binary Ti–Sn alloys with tin contents ranging from 1 to 30 wt% were investigated. Commercially pure titanium (c.p. Ti) was used as a control. The experimental results indicated that all the Ti–Sn alloys showed hcp α structure, and the hardness values of the Ti–Sn alloys increased with greater Sn contents, ranging from 246 HV (Ti–1Sn) to 357 HV (Ti–30Sn). Among these Ti–Sn alloys, the alloy with 30 wt% Sn content showed the highest hardness value. The grindability of each metal was found to be largely dependent on the grinding conditions. The addition of Sn to c.p. Ti did contribute to improving the grindability of c.p. Ti. The Ti–Sn alloys with a higher Sn concentration could be ground more readily. The grinding rate of the Ti–20Sn alloy at 1200 m/min was about 2.8 times higher than that of c.p. Ti. Additionally, the grinding ratios of the Ti–10Sn, Ti–20Sn, and Ti–30Sn alloys at 1200 m/min were about 2.8, 2.7, and 3.4 times that of c.p. Ti, respectively. Our research suggests that the Ti–Sn alloys with Sn contents of 10 wt% and greater developed here are good candidates for machining by the CAD/CAM method.


Pure Titanium Dental Prosthesis Metal Chip Wheel Material Ground Metal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge the partial financial support of National Science Council of Taiwan (NSC 97-2221-E-212-009 and NSC 98-2221-E-212-013). The authors also express appreciation to Dr. Cheryl Rutledge, Associate Professor of English, Da-Yeh University, for her editorial assistance.


  1. 1.
    Oshida Y (2007) Bioscience and bioengineering of titanium materials. Elsevier, Oxford, p 3Google Scholar
  2. 2.
    Takahashi M, Kikuchi M, Okuno O (2004) Dent Mater J 23:203PubMedGoogle Scholar
  3. 3.
    Okuno O, Hamanaka H (1989) Dent Jpn 26:101Google Scholar
  4. 4.
    Lautenschlager EP, Monaghan P (1993) Int Dent J 43:245PubMedGoogle Scholar
  5. 5.
    Takahashi M, Kikuchi M, Takada Y, Okuno O (2002) Dent Mater J 21:270PubMedGoogle Scholar
  6. 6.
    Duret F, Blouin JL, Duret B (1988) J Am Dent Assoc 117:715PubMedGoogle Scholar
  7. 7.
    Craig RG (2006) Restorative dental materials, 12th edn. CV Mosby, St. Louis, p 454Google Scholar
  8. 8.
    Kikuchi M, Takada Y, Kiyosue S, Yoda M, Woldu M, Cai Z, Okuno O, Okabe T (2003) Dent Mater 19:375CrossRefPubMedGoogle Scholar
  9. 9.
    Kikuchi M, Takahashi M, Okuno O (2003) Dent Mater J 22:328PubMedGoogle Scholar
  10. 10.
    Kikuchi M, Takahashi M, Sato H, Okuno O, Nunn ME, Okabe T (2005) J Biomed Mater Res B Appl Biomater 77:34Google Scholar
  11. 11.
    Hsu HC, Wu SC, Chiang TY, Ho WF (2009) J Alloys Compd 476:817CrossRefGoogle Scholar
  12. 12.
    Hsu HC, Pan CH, Wu SC, Ho WF (2009) J Alloys Compd 474:578CrossRefGoogle Scholar
  13. 13.
    Ho WF, Chen WK, Wu SC, Hsu HC (2008) J Mater Sci Mater Med 19:3179CrossRefPubMedGoogle Scholar
  14. 14.
    Ho WF, Cheng CH, Pan CH, Wu SC, Hsu HC (2009) Mater Sci Eng C 29:36CrossRefGoogle Scholar
  15. 15.
    Walker PR, LeBlanc J, Sikorska M (1989) Biochemistry 28:3911CrossRefPubMedGoogle Scholar
  16. 16.
    Rao S, Ushida T, Tateishi T, Okazaki Y, Asao S (1996) Biomed Mater Eng 6:79PubMedGoogle Scholar
  17. 17.
    Davidson JA, Mishra AK, Kovacs P, Poggie RA (1994) Biomed Mater Eng 4:231PubMedGoogle Scholar
  18. 18.
    Grimme P, Hupfer P (1992) Metallurgy 46:365Google Scholar
  19. 19.
    Niinomi M (2003) Sci Tech Adv Mater 4:445CrossRefGoogle Scholar
  20. 20.
    Niinomi M (2002) Metall Mater Trans 33A:477CrossRefGoogle Scholar
  21. 21.
    Hsu HC, Wu SC, Hong YS, Ho WF (2009) J Alloy Compd 479:390CrossRefGoogle Scholar
  22. 22.
    Watanabe I, Ohkubo C, Ford JP, Atsuta M, Okabe T (2000) Dent Mater 16:420CrossRefPubMedGoogle Scholar
  23. 23.
    Ohkubo C, Watanabe I, Ford JP, Nakajima H, Hosoi T, Okabe T (2000) Biomaterials 21:421CrossRefPubMedGoogle Scholar
  24. 24.
    Koike M, Jacobson D, Chan KS, Okabe T (2009) Dent Mater J 28:587CrossRefPubMedGoogle Scholar
  25. 25.
    Huang YC, Suzuki S, Kaneko H, Sato T (1970) The science, technology and application of titanium. Pergamon Press, Oxford, p 691, 695Google Scholar
  26. 26.
    Williams JC (1973) Titanium science and technology, metallurgical society of AIME. Plenum Press, New York, p 1433Google Scholar
  27. 27.
    Sato T, Hukai S, Huang YC (1960) J Aust Inst Met 5:149Google Scholar
  28. 28.
    Takeyama H, Yoshikawa T, Takada T (1975) J Jpn Soc Preci Eng 41:392Google Scholar
  29. 29.
    Grajower R, Kurz I, Bapna MS (1986) Dent Mater 2:187CrossRefPubMedGoogle Scholar
  30. 30.
    Reisbick MH, Bunshah RF (1973) J Dent Res 52:1138PubMedGoogle Scholar
  31. 31.
    O’Brien WJ (1989) Dental materials: properties and selection, third edn. Quintessence, Chicago, p 515Google Scholar
  32. 32.
    Okabe T, Kikuchi M, Ohkubo C, Koike M, Okuno O, Oda Y (2004) J Miner Met Mater Soc 56:46Google Scholar
  33. 33.
    Takahashi M, Kikuchi M, Okuno O (2009) Mater Trans 50:859CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Hsueh-Chuan Hsu
    • 1
    • 2
  • Hsi-Chen Lin
    • 1
  • Shih-Ching Wu
    • 1
    • 2
  • Yu-Sheng Hong
    • 3
  • Wen-Fu Ho
    • 4
  1. 1.Department of Dental Laboratory TechnologyCentral Taiwan University of Science and TechnologyTaichungTaiwan, ROC
  2. 2.Institute of Biomedical Engineering and Material ScienceCentral Taiwan University of Science and TechnologyTaichungTaiwan, ROC
  3. 3.Department of Mechanical and Automation EngineeringDa-Yeh UniversityChanghuaTaiwan, ROC
  4. 4.Department of Materials Science and EngineeringDa-Yeh UniversityChanghuaTaiwan, ROC

Personalised recommendations