Journal of Materials Science

, Volume 45, Issue 6, pp 1629–1637 | Cite as

Structure, mechanical properties and corrosion resistance of nanocomposite coatings deposited by PVD technology onto the X6CrNiMoTi17-12-2 and X40CrMoV5-1 steel substrates

  • K. Lukaszkowicz
  • J. Sondor
  • A. Kriz
  • M. Pancielejko


This article presents the research results on the structure and mechanical properties of nanocomposite coatings deposited by PVD methods on the X6CrNiMoTi17-12-2 austenitic steel and X40CrMoV5-1 hot work tool steel substrates. The tests were carried out on TiAlSiN, CrAlSiN and AlTiCrN coatings. It was found that the structure of the PVD coatings consisted of fine crystallites, while their average size fitted within the range 11–25 nm, depending on the coating type. The coatings demonstrated columnar structure and dense cross-sectional morphology as well as good adhesion to the substrate, the latter not only being the effect of adhesion but also by the transition zone between the coating and the substrate, developed as a result of diffusion and high-energy ion action that caused mixing of the elements in the interface zone. The critical load L C2 lies within the range 27–54 N, depending on the coating and substrate type. The coatings demonstrate a high hardness (~40 GPa) and corrosion resistance.


Acoustic Emission Critical Load Austenitic Steel Corrosion Current Density Nanocomposite Coating 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Yu C, Wang S, Tian L, Li T, Xu B (2009) J Mater Sci 44:300. doi: 10.1007/s10853-008-3066-3 CrossRefADSGoogle Scholar
  2. 2.
    Cheng JB, Liang XB, Xu BS, Wu YX (2009) J Mater Sci 44:3356. doi: 10.1007/s10853-009-3436-5 CrossRefADSGoogle Scholar
  3. 3.
    Kao WH (2009) J Mater Sci 44:3488. doi: 10.1007/s10853-009-3467-y CrossRefADSGoogle Scholar
  4. 4.
    Mao Z, Ma J, Wang J, Sun B (2009) J Mater Sci 44:3265. doi: 10.1007/s10853-009-3438-3 CrossRefADSGoogle Scholar
  5. 5.
    Sundararajan G, Sudharshan Phani P, Jyothirmayi A, Gundakaram RC (2009) J Mater Sci 44:2320. doi: 10.1007/s10853-008-3200-2 CrossRefADSGoogle Scholar
  6. 6.
    Dobrzanski LA, Lukaszkowicz K, Zarychta A, Cunha L (2004) J Mater Process Technol 164–165:816Google Scholar
  7. 7.
    Lukaszkowicz K, Dobrzanski LA (2008) J Mater Sci 43:3400. doi: 10.1007/s10853-008-2523-3 CrossRefADSGoogle Scholar
  8. 8.
    Voevodin AA, Zabinski JS, Muratore C (2005) Tsinghua Sci Technol 10:665CrossRefGoogle Scholar
  9. 9.
    Yang SM, Chang YY, Wang DY, Lin DY, Wu WT (2007) J Alloys Compd 440:375CrossRefGoogle Scholar
  10. 10.
    Tjong SC, Chen H (2004) Mater Sci Eng 45:1CrossRefGoogle Scholar
  11. 11.
    Zhang S, Ali N (eds) (2007) Nanocomposite thin films and coatings. Imperial College Press, LondonGoogle Scholar
  12. 12.
    Veprek S, Veprek-Heijman MGJ, Karvankova P, Prochazka J (2005) Thin Solid Films 476:1CrossRefADSGoogle Scholar
  13. 13.
    Donnet C, Erdemir A (2004) Surf Coat Technol 180–181:76CrossRefGoogle Scholar
  14. 14.
    Voevodin AA, Zabinski JS (2005) Compos Sci Technol 65:741Google Scholar
  15. 15.
    Holubar P, Jilek M, Sima M (2000) Surf Coat Technol 133–134:145CrossRefGoogle Scholar
  16. 16.
    Rafaja D, Poklad A, Klemem V, Schreiber G, Heger D, Sima M (2007) Mater Sci Eng A 462:279CrossRefGoogle Scholar
  17. 17.
    Carvalho S, Ribeiro E, Rebouta L, Tavares C, Mendonca JP, Caetano Monteiro A, Carvalho NJM, De Hosson JThM, Cavaleiro A (2004) Surf Coat Technol 177–178:459Google Scholar
  18. 18.
    Veprek S (1997) Surf Coat Technol 97:15CrossRefGoogle Scholar
  19. 19.
    Veprek S (1998) Thin Solid Films 317:449CrossRefADSGoogle Scholar
  20. 20.
    Rafaja D, Poklad A, Klemm V, Schreiber G, Heger D, Sima M, Dopita M (2006) Thin Solid Films 514:240CrossRefADSGoogle Scholar
  21. 21.
    Burnett PJ, Rickerby DS (1987) Thin Solid Films 154:403CrossRefADSGoogle Scholar
  22. 22.
    Bellido-Gonzalez V, Stefanopoulos N, Deguilhen F (1995) Surf Coat Technol 74–75:884CrossRefGoogle Scholar
  23. 23.
    Holmberg K, Matthews A (1994) In: Dowson D (ed) Coatings tribology, vol 1. Elsevier, Amsterdam, pp 264–268 Google Scholar
  24. 24.
    Behera SK, Sahu PK, Pratihar SK, Bhattacharyya S (2004) Mater Lett 58:3710CrossRefGoogle Scholar
  25. 25.
    Sergici AO, Randall NX (2006) Adv Mater Process 4:1Google Scholar
  26. 26.
    He Y, Apachitei I, Zhou J, Walstock T, Duszczyk J (2006) Surf Coat Technol 201:2534CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • K. Lukaszkowicz
    • 1
  • J. Sondor
    • 2
  • A. Kriz
    • 3
  • M. Pancielejko
    • 4
  1. 1.Institute of Engineering Materials and BiomaterialsSilesian University of TechnologyGliwicePoland
  2. 2.LISS a.s.Roznov pod RadhostemCzech Republic
  3. 3.Department of Materials Science and TechnologyUniversity of West BohemiaPlzenCzech Republic
  4. 4.Institute of Mechatronics, Nanotechnology and Vacuum TechniqueKoszalin University of TechnologyKoszalinPoland

Personalised recommendations