Skip to main content

Advertisement

Log in

Structure, mechanical properties and corrosion resistance of nanocomposite coatings deposited by PVD technology onto the X6CrNiMoTi17-12-2 and X40CrMoV5-1 steel substrates

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This article presents the research results on the structure and mechanical properties of nanocomposite coatings deposited by PVD methods on the X6CrNiMoTi17-12-2 austenitic steel and X40CrMoV5-1 hot work tool steel substrates. The tests were carried out on TiAlSiN, CrAlSiN and AlTiCrN coatings. It was found that the structure of the PVD coatings consisted of fine crystallites, while their average size fitted within the range 11–25 nm, depending on the coating type. The coatings demonstrated columnar structure and dense cross-sectional morphology as well as good adhesion to the substrate, the latter not only being the effect of adhesion but also by the transition zone between the coating and the substrate, developed as a result of diffusion and high-energy ion action that caused mixing of the elements in the interface zone. The critical load L C2 lies within the range 27–54 N, depending on the coating and substrate type. The coatings demonstrate a high hardness (~40 GPa) and corrosion resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Yu C, Wang S, Tian L, Li T, Xu B (2009) J Mater Sci 44:300. doi:10.1007/s10853-008-3066-3

    Article  CAS  ADS  Google Scholar 

  2. Cheng JB, Liang XB, Xu BS, Wu YX (2009) J Mater Sci 44:3356. doi:10.1007/s10853-009-3436-5

    Article  CAS  ADS  Google Scholar 

  3. Kao WH (2009) J Mater Sci 44:3488. doi:10.1007/s10853-009-3467-y

    Article  CAS  ADS  Google Scholar 

  4. Mao Z, Ma J, Wang J, Sun B (2009) J Mater Sci 44:3265. doi:10.1007/s10853-009-3438-3

    Article  CAS  ADS  Google Scholar 

  5. Sundararajan G, Sudharshan Phani P, Jyothirmayi A, Gundakaram RC (2009) J Mater Sci 44:2320. doi:10.1007/s10853-008-3200-2

    Article  CAS  ADS  Google Scholar 

  6. Dobrzanski LA, Lukaszkowicz K, Zarychta A, Cunha L (2004) J Mater Process Technol 164–165:816

  7. Lukaszkowicz K, Dobrzanski LA (2008) J Mater Sci 43:3400. doi:10.1007/s10853-008-2523-3

    Article  CAS  ADS  Google Scholar 

  8. Voevodin AA, Zabinski JS, Muratore C (2005) Tsinghua Sci Technol 10:665

    Article  CAS  Google Scholar 

  9. Yang SM, Chang YY, Wang DY, Lin DY, Wu WT (2007) J Alloys Compd 440:375

    Article  CAS  Google Scholar 

  10. Tjong SC, Chen H (2004) Mater Sci Eng 45:1

    Article  Google Scholar 

  11. Zhang S, Ali N (eds) (2007) Nanocomposite thin films and coatings. Imperial College Press, London

    Google Scholar 

  12. Veprek S, Veprek-Heijman MGJ, Karvankova P, Prochazka J (2005) Thin Solid Films 476:1

    Article  CAS  ADS  Google Scholar 

  13. Donnet C, Erdemir A (2004) Surf Coat Technol 180–181:76

    Article  Google Scholar 

  14. Voevodin AA, Zabinski JS (2005) Compos Sci Technol 65:741

    CAS  Google Scholar 

  15. Holubar P, Jilek M, Sima M (2000) Surf Coat Technol 133–134:145

    Article  Google Scholar 

  16. Rafaja D, Poklad A, Klemem V, Schreiber G, Heger D, Sima M (2007) Mater Sci Eng A 462:279

    Article  Google Scholar 

  17. Carvalho S, Ribeiro E, Rebouta L, Tavares C, Mendonca JP, Caetano Monteiro A, Carvalho NJM, De Hosson JThM, Cavaleiro A (2004) Surf Coat Technol 177–178:459

  18. Veprek S (1997) Surf Coat Technol 97:15

    Article  CAS  Google Scholar 

  19. Veprek S (1998) Thin Solid Films 317:449

    Article  CAS  ADS  Google Scholar 

  20. Rafaja D, Poklad A, Klemm V, Schreiber G, Heger D, Sima M, Dopita M (2006) Thin Solid Films 514:240

    Article  CAS  ADS  Google Scholar 

  21. Burnett PJ, Rickerby DS (1987) Thin Solid Films 154:403

    Article  CAS  ADS  Google Scholar 

  22. Bellido-Gonzalez V, Stefanopoulos N, Deguilhen F (1995) Surf Coat Technol 74–75:884

    Article  Google Scholar 

  23. Holmberg K, Matthews A (1994) In: Dowson D (ed) Coatings tribology, vol 1. Elsevier, Amsterdam, pp 264–268

  24. Behera SK, Sahu PK, Pratihar SK, Bhattacharyya S (2004) Mater Lett 58:3710

    Article  CAS  Google Scholar 

  25. Sergici AO, Randall NX (2006) Adv Mater Process 4:1

    Google Scholar 

  26. He Y, Apachitei I, Zhou J, Walstock T, Duszczyk J (2006) Surf Coat Technol 201:2534

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Lukaszkowicz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lukaszkowicz, K., Sondor, J., Kriz, A. et al. Structure, mechanical properties and corrosion resistance of nanocomposite coatings deposited by PVD technology onto the X6CrNiMoTi17-12-2 and X40CrMoV5-1 steel substrates. J Mater Sci 45, 1629–1637 (2010). https://doi.org/10.1007/s10853-009-4140-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-4140-1

Keywords

Navigation