Skip to main content
Log in

Improvement of high-temperature oxidation resistance of titanium-based alloy by sol–gel method

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Sol–gel dip coating of SiO2 was applied on a TiAl-based alloy, and subsequent heat treatment was performed. XRD and SEM/EDS analysis revealed that an amorphous silica coating was formed on the alloy. Isothermal oxidation and cyclic oxidation at 600 and 700 °C in static air of the specimens with or without coating were performed to investigate the effect of the SiO2 coating on the oxidation behavior of the alloy by thermogravimetry. The average parabolic rate constants of the coated specimens were greatly reduced due to the presence of the coating. Severe cracks and spallation of the scales were observed on the blank specimens, but not on the coated ones. The oxide scales formed on the uncoated specimens were stratified. For the coated samples, a mixture layer of rutile TiO2 and Al2O3 occurred beneath the applied film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sadeghian Z, Enayati MH, Beiss P (2009) J Mater Sci 44:2566. doi:10.1007/s10853-009-3335-9

    Article  CAS  ADS  Google Scholar 

  2. Cao R, Zhu H, Chen JH, Zhang J (2008) J Mater Sci 43:299. doi:10.1007/s10853-007-2172-y

    Article  CAS  ADS  Google Scholar 

  3. Li YL, Feng JC, Peng H, Hua Z (2009) J Mater Sci 44:3077. doi:10.1007/s10853-009-3409-8

    Article  CAS  ADS  Google Scholar 

  4. Cai JZ, Kulovits A, Shankar MR, Wiezorek J (2008) J Mater Sci 43:7474. doi:10.1007/s10853-008-2887-4

    Article  CAS  ADS  Google Scholar 

  5. Liu YM, Xiu ZY, Wu GH, Yang WS, Chen GQ, Gou HS (2009) J Mater Sci 44:4258. doi:10.1007/s10853-009-3618-1

    Article  CAS  ADS  Google Scholar 

  6. Rahmel A, Spencer PJ (1999) Oxid Met 35:53

    Article  Google Scholar 

  7. Tetsui T (2002) Mater Sci Eng A 329–331:582

    Google Scholar 

  8. Yoshihara M, Kim YW (2005) Intermetallics 13:952

    Article  CAS  Google Scholar 

  9. Teng LD, Nakatomi D, Seetharaman S (2007) Metall Mater Trans B38:477

    Google Scholar 

  10. Jiang HR, Hirohasi M, Lu Y, Imanari H (2002) Scripta Mater 46:639

    Article  CAS  Google Scholar 

  11. Shida Y, Anada H (1996) Oxid Met 45:197

    Article  CAS  Google Scholar 

  12. Becker S, Rahmel A, Schorr M, Schutze M (1992) Oxid Met 38:425

    Article  CAS  Google Scholar 

  13. Xiong YM, Zhu SL, Wang FH (2005) Surf Coat Technol 190:195

    Article  CAS  Google Scholar 

  14. Chu MS, Wu SK (2003) Acta Mater 51:3109

    Article  CAS  Google Scholar 

  15. Liang W, Zhao XG (2001) Scripta Mater 44:1049

    Article  CAS  Google Scholar 

  16. Xiong HP, Xie YH, Mao W, Ma WL, Chen YF, Li XH, Cheng YY (2003) Scripta Mater 49:1117

    Article  CAS  Google Scholar 

  17. Li XY, Taniguchi S, Matsunaga Y (2003) Intermetallics 11:143

    Article  CAS  Google Scholar 

  18. Du HL, Datta PK, Lewis DB, Burnell-Gray JS (1995) J Mater Sci 30:2640. doi:10.1007/BF00362147

    Article  CAS  ADS  Google Scholar 

  19. Mckee DW, Luthra KL (1993) Surf Coat Technol 56:109

    Article  CAS  Google Scholar 

  20. Clark RK, Unnan J, Wiedemann KE (1987) Oxid Met 28:391

    Article  CAS  Google Scholar 

  21. Fujishiro S, Eylon D (1980) Metall Trans A: Phys Metall Mater Sci 11A:1259

    Article  CAS  ADS  Google Scholar 

  22. Taniguchi S, Shibada T, Yamada T, Lou H, Wang F, Wu W (1993) Oxid Met 39:457

    Article  CAS  Google Scholar 

  23. Chu MS, Wu SK (2004) Surf Coat Technol 179:257

    Article  CAS  Google Scholar 

  24. Li H, Liang K, Mei L, Gu S, Wang S (2001) Mater Lett 51:320

    Article  CAS  Google Scholar 

  25. Zhang S, Lee WE (2003) J Eur Ceram Soc 23:1215

    Article  CAS  Google Scholar 

  26. Zhang XJ, Li Q, Zhao SY, Gao CX, Wang L, Zhang J (2008) App Sur Sci 255:1860

    Article  CAS  ADS  Google Scholar 

  27. Zhu M, Li MS, Li YL, Zhou YC (2006) Mater Sci Eng A 415:177

    Article  Google Scholar 

  28. Zhang XJ, Li Q, Zhao SY, Gao CX, Zhang ZG (2008) J Sol–Gel Sci Tech 47:107

    Article  CAS  Google Scholar 

  29. Zhang XJ, Zhao SY, Gao CX, Wang SJ (2009) J Sol–Gel Sci Tech 49:221

    Article  CAS  Google Scholar 

  30. Liu Y, Ren W, Zhang LY, Yao X (1999) Thin Solid Films 353:124

    Article  CAS  ADS  Google Scholar 

  31. Sarrazin P, Coddet C (1974) Corros Sci 14:83

    Article  CAS  Google Scholar 

  32. Barin I (1989) Thermochemical data of pure substrates. VCH, Weinheim

    Google Scholar 

  33. Kobayashi E, Yoshihara M, Tanaka R (1990) High Temp Technol 8:179

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. J. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X.J., Gao, Y.H., Ren, B.Y. et al. Improvement of high-temperature oxidation resistance of titanium-based alloy by sol–gel method. J Mater Sci 45, 1622–1628 (2010). https://doi.org/10.1007/s10853-009-4138-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-4138-8

Keywords

Navigation