Advertisement

Journal of Materials Science

, Volume 45, Issue 6, pp 1622–1628 | Cite as

Improvement of high-temperature oxidation resistance of titanium-based alloy by sol–gel method

  • X. J. Zhang
  • Y. H. Gao
  • B. Y. Ren
  • N. Tsubaki
Article

Abstract

Sol–gel dip coating of SiO2 was applied on a TiAl-based alloy, and subsequent heat treatment was performed. XRD and SEM/EDS analysis revealed that an amorphous silica coating was formed on the alloy. Isothermal oxidation and cyclic oxidation at 600 and 700 °C in static air of the specimens with or without coating were performed to investigate the effect of the SiO2 coating on the oxidation behavior of the alloy by thermogravimetry. The average parabolic rate constants of the coated specimens were greatly reduced due to the presence of the coating. Severe cracks and spallation of the scales were observed on the blank specimens, but not on the coated ones. The oxide scales formed on the uncoated specimens were stratified. For the coated samples, a mixture layer of rutile TiO2 and Al2O3 occurred beneath the applied film.

Keywords

TiO2 Oxide Scale Oxidation Resistance Cyclic Oxidation Coated Specimen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Sadeghian Z, Enayati MH, Beiss P (2009) J Mater Sci 44:2566. doi: 10.1007/s10853-009-3335-9 CrossRefADSGoogle Scholar
  2. 2.
    Cao R, Zhu H, Chen JH, Zhang J (2008) J Mater Sci 43:299. doi: 10.1007/s10853-007-2172-y CrossRefADSGoogle Scholar
  3. 3.
    Li YL, Feng JC, Peng H, Hua Z (2009) J Mater Sci 44:3077. doi: 10.1007/s10853-009-3409-8 CrossRefADSGoogle Scholar
  4. 4.
    Cai JZ, Kulovits A, Shankar MR, Wiezorek J (2008) J Mater Sci 43:7474. doi: 10.1007/s10853-008-2887-4 CrossRefADSGoogle Scholar
  5. 5.
    Liu YM, Xiu ZY, Wu GH, Yang WS, Chen GQ, Gou HS (2009) J Mater Sci 44:4258. doi: 10.1007/s10853-009-3618-1 CrossRefADSGoogle Scholar
  6. 6.
    Rahmel A, Spencer PJ (1999) Oxid Met 35:53CrossRefGoogle Scholar
  7. 7.
    Tetsui T (2002) Mater Sci Eng A 329–331:582Google Scholar
  8. 8.
    Yoshihara M, Kim YW (2005) Intermetallics 13:952CrossRefGoogle Scholar
  9. 9.
    Teng LD, Nakatomi D, Seetharaman S (2007) Metall Mater Trans B38:477Google Scholar
  10. 10.
    Jiang HR, Hirohasi M, Lu Y, Imanari H (2002) Scripta Mater 46:639CrossRefGoogle Scholar
  11. 11.
    Shida Y, Anada H (1996) Oxid Met 45:197CrossRefGoogle Scholar
  12. 12.
    Becker S, Rahmel A, Schorr M, Schutze M (1992) Oxid Met 38:425CrossRefGoogle Scholar
  13. 13.
    Xiong YM, Zhu SL, Wang FH (2005) Surf Coat Technol 190:195CrossRefGoogle Scholar
  14. 14.
    Chu MS, Wu SK (2003) Acta Mater 51:3109CrossRefGoogle Scholar
  15. 15.
    Liang W, Zhao XG (2001) Scripta Mater 44:1049CrossRefGoogle Scholar
  16. 16.
    Xiong HP, Xie YH, Mao W, Ma WL, Chen YF, Li XH, Cheng YY (2003) Scripta Mater 49:1117CrossRefGoogle Scholar
  17. 17.
    Li XY, Taniguchi S, Matsunaga Y (2003) Intermetallics 11:143CrossRefGoogle Scholar
  18. 18.
    Du HL, Datta PK, Lewis DB, Burnell-Gray JS (1995) J Mater Sci 30:2640. doi: 10.1007/BF00362147 CrossRefADSGoogle Scholar
  19. 19.
    Mckee DW, Luthra KL (1993) Surf Coat Technol 56:109CrossRefGoogle Scholar
  20. 20.
    Clark RK, Unnan J, Wiedemann KE (1987) Oxid Met 28:391CrossRefGoogle Scholar
  21. 21.
    Fujishiro S, Eylon D (1980) Metall Trans A: Phys Metall Mater Sci 11A:1259CrossRefADSGoogle Scholar
  22. 22.
    Taniguchi S, Shibada T, Yamada T, Lou H, Wang F, Wu W (1993) Oxid Met 39:457CrossRefGoogle Scholar
  23. 23.
    Chu MS, Wu SK (2004) Surf Coat Technol 179:257CrossRefGoogle Scholar
  24. 24.
    Li H, Liang K, Mei L, Gu S, Wang S (2001) Mater Lett 51:320CrossRefGoogle Scholar
  25. 25.
    Zhang S, Lee WE (2003) J Eur Ceram Soc 23:1215CrossRefGoogle Scholar
  26. 26.
    Zhang XJ, Li Q, Zhao SY, Gao CX, Wang L, Zhang J (2008) App Sur Sci 255:1860CrossRefADSGoogle Scholar
  27. 27.
    Zhu M, Li MS, Li YL, Zhou YC (2006) Mater Sci Eng A 415:177CrossRefGoogle Scholar
  28. 28.
    Zhang XJ, Li Q, Zhao SY, Gao CX, Zhang ZG (2008) J Sol–Gel Sci Tech 47:107CrossRefGoogle Scholar
  29. 29.
    Zhang XJ, Zhao SY, Gao CX, Wang SJ (2009) J Sol–Gel Sci Tech 49:221CrossRefGoogle Scholar
  30. 30.
    Liu Y, Ren W, Zhang LY, Yao X (1999) Thin Solid Films 353:124CrossRefADSGoogle Scholar
  31. 31.
    Sarrazin P, Coddet C (1974) Corros Sci 14:83CrossRefGoogle Scholar
  32. 32.
    Barin I (1989) Thermochemical data of pure substrates. VCH, WeinheimGoogle Scholar
  33. 33.
    Kobayashi E, Yoshihara M, Tanaka R (1990) High Temp Technol 8:179Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • X. J. Zhang
    • 1
  • Y. H. Gao
    • 1
  • B. Y. Ren
    • 1
  • N. Tsubaki
    • 2
  1. 1.College of Applied ChemistryShenyang University of Chemical TechnologyShenyangChina
  2. 2.Department of Applied Chemistry, School of EngineeringUniversity of ToyamaToyamaJapan

Personalised recommendations