Skip to main content

Advertisement

Log in

Mechanical properties of polycrystalline silicon solar cell feed stock grown via fluidized bed reactors

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Polysilicon granular beads grown via a fluidized bed reactor, a feedstock for silicon solar cell production, were annealed, sectioned, and indented using a combination of nanoindentation and microhardness testing to determine the mechanical response of this commercially available raw material. The granular material, with macroscopic dimensions on the order of millimeters and an internal grain size on the order of 20 nm, has an indentation modulus of approximately 160 GPa, and a hardness prior to fracture of 9.6 GPa; these values are relatively insensitive to annealing at temperatures between 600 and 1100 °C. Indentation fracture testing suggests the toughness of this material is on the order of 0.6 MPa m1/2. The fracture sequence has been verified using acoustic emission testing during indentation. Annealing in air at 600 °C for 3 days increases the toughness by approximately 50% with little change in grain size. The as grown material contains solute hydrogen, identified by infrared spectroscopy, from the growth process; annealing in air tends to remove solute hydrogen from the material at temperatures above 1050 °C. The removal of solute hydrogen appears to cause slight increases in toughness, while grain growth at elevated annealing temperatures or the formation of hydrogen complexes in the silicon appears to decrease toughness. The results suggest thermal treatments of silicon grown with this method can moderately alter the friability of the final product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Caussat B, Hemati M, Couderc JP (1995) Chem Eng Sci 50:3615

    Article  CAS  Google Scholar 

  2. Dahl MM, Bellou A, Bahr DF, Norton MG, Osborne EW (2009) J Cryst Growth 311:1496

    Article  CAS  ADS  Google Scholar 

  3. Ballarini R, Mullen RL, Yin Y, Kahn H, Stemmer S, Heuer AH (1997) J Mater Res 12:915

    Article  CAS  ADS  Google Scholar 

  4. Cook RF (2006) J Mater Sci 41:841. doi:10.1007/s10853-006-6567-y

    Article  CAS  ADS  Google Scholar 

  5. Chiao YH, Clarke DR (1989) Acta Met 37:203

    Article  CAS  Google Scholar 

  6. John CFSt (1975) Philos Mag 32:1193

    Article  ADS  Google Scholar 

  7. Brede M, Hansen P (1988) Acta Met 36:2003

    Article  CAS  Google Scholar 

  8. Hirsch PB, Samuels J, Roberts SG (1989) Proc R Soc Lond A 421:25

    Article  CAS  ADS  Google Scholar 

  9. Chen CP, Leipold MH (1980) Am Ceram Soc Bull 59:469

    CAS  Google Scholar 

  10. George A, Michot G (1993) Mater Sci Eng A 164:118

    Article  Google Scholar 

  11. Ericson F, Johansson S, Schweitz JA (1988) Mat Sci Eng A 105:131

    Article  Google Scholar 

  12. Ebrahimi F, Kalwani L (1999) Mat Sci Eng A 268:116

    Article  Google Scholar 

  13. Fancher RW, Watkins CM, Norton MG, Bahr DF, Osborne EW (2001) J Mater Sci 36:5441. doi:10.1023/A:1012425529753

    Article  CAS  Google Scholar 

  14. Brodie RC, Bahr DF (2003) Mat Sci Eng A 351:166

    Article  Google Scholar 

  15. Sharpe WN, Yuan B, Edwards RL (1997) Mat Res Soc Symp Proc 505:51

    Google Scholar 

  16. Tsuchiya T, Sakata J, Taga Y (1997) Mat Res Soc Symp Proc 505:285

    Google Scholar 

  17. Kahn H, Tayebi N, Ballarini R, Mullen RL, Heuer AH (2000) Sens Actuators A 82:274

    Article  Google Scholar 

  18. Oliver WC, Pharr GM (1992) J Mater Res 7:1564

    Article  CAS  ADS  Google Scholar 

  19. Morris DJ, Cook RF (2005) Int J Fract 136:237

    Article  Google Scholar 

  20. Morris DJ, Vodnick AM, Cook RF (2005) Int J Fract 136:265

    Article  CAS  Google Scholar 

  21. Cook RF, Pharr GM (1990) J Am Ceram Soc 73:787

    Article  CAS  Google Scholar 

  22. von Keudell A, Abelson JR (1998) J Appl Phys 84:489

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank M.M. Dahl for help in sample preparation, microscopy for Fig. 1, and technique development in the handling of silicon granules grown by the FBR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. F. Bahr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zbib, M.B., Tarun, M.C., Norton, M.G. et al. Mechanical properties of polycrystalline silicon solar cell feed stock grown via fluidized bed reactors. J Mater Sci 45, 1560–1566 (2010). https://doi.org/10.1007/s10853-009-4124-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-4124-1

Keywords

Navigation