Journal of Materials Science

, Volume 45, Issue 8, pp 2228–2232 | Cite as

Convectional controlled crystal–melt interface using two-phase radio-frequency electromagnetic heating

  • R. Hermann
  • G. Gerbeth
  • J. Priede
  • A. Krauze
  • G. Behr
  • B. Büchner


The radio frequency floating-zone growth of massive intermetallic single crystals is very often unsuccessful due to an unfavourable solid–liquid interface geometry enclosing concave fringes. This interface depends on the flow in the molten zone. A tailored magnetic two-phase stirrer system has been developed which enables the controlled influence on the melt flow ranging from intense inwards to outwards flows. Depending on the phase shift between the two induction coils, a transition from a double vortex structure to a single vortex structure is created at a preferable phase shift of 90°. This change in the flow field has a significant influence on the shape of the solid–liquid interface. Due to their attractive properties for high temperature applications such as high melting temperature, low density, high modulus and good oxidation resistance, the magnetic system was applied to the crystal growth of TiAl alloys.


Liquid Interface TiAl Alloy Diffusion Boundary Layer Single Crystal Growth Molten Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The financial support of the Deutsche Forschungsgemeinschaft within the SFB 609 “Elektromagnetische Strömungsbeeinflussung in Metallurgie, Kristallzüchtung und Elektrochemie” is gratefully acknowledged.


  1. 1.
    Dold P, Cröll A, Lichtensteiger M, Kaiser Th, Benz KW (2001) J Cryst Growth 231(1–2):95CrossRefADSGoogle Scholar
  2. 2.
    Ma N, Walker JS, Lüdge A, Riemann H (2001) J Cryst Growth 230(1–2):118CrossRefADSGoogle Scholar
  3. 3.
    Cröll A, Benz KW (1999) Prog Cryst Growth Charact Mater 38(1–4):133Google Scholar
  4. 4.
    Passerone A, Eustathopoulos N (2005) J Mater Sci 40(9–10):XV. doi: 10.1007/s10853-005-2128-z CrossRefGoogle Scholar
  5. 5.
    Morthland TE, Walker JS (1997) Int J Heat Mass Transf 40(14):3283CrossRefGoogle Scholar
  6. 6.
    Munakata T, Tanasawa I (1999) J Growth 206(1–2):27CrossRefADSGoogle Scholar
  7. 7.
    Tanaka T, Bannai E, Kawai S, Yamane T (1975) J Cryst Growth 30:193CrossRefADSGoogle Scholar
  8. 8.
    Takeya H, Habuta E, Kawano-Furukawa H, Ooba T, Hirata K (2001) J Magn Magn Mater 226–230(Part 1):269CrossRefGoogle Scholar
  9. 9.
    Behr G, Löser W, Graw G, Bitterlich H, Freudenberger J, Fink J, Schultz L (1999) J Cryst Growth 198–199(Part 1):642CrossRefGoogle Scholar
  10. 10.
    Clemens H (1995) Z Metallkd 86(12):814Google Scholar
  11. 11.
    Dimiduk DM (1999) Mater Sci Eng A 263:281CrossRefGoogle Scholar
  12. 12.
    Hermann R, Behr G, Gerbeth G, Priede J, Uhlemann H-J, Fischer F, Schultz L (2005) J Cryst Growth 275:e1533–e1538CrossRefADSGoogle Scholar
  13. 13.
    Priede J, Gerbeth G (2006) IEEE Trans Magn 42(2):301–308CrossRefADSGoogle Scholar
  14. 14.
    Krauze A, Priede J, Hermann R, Gerbeth G (2008) Proceedings of the 7th PAMIR international conference on fundamental and applied MHD, Giens, 8–12 September 2008, pp 851–855Google Scholar
  15. 15.
    Witusiewicz VT, Bondar AA, Hecht U, Rex S, Velikanova TYa (2008) J Alloys Compd 465:64CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • R. Hermann
    • 1
  • G. Gerbeth
    • 2
  • J. Priede
    • 3
  • A. Krauze
    • 4
  • G. Behr
    • 1
  • B. Büchner
    • 1
  1. 1.Leibniz Institute of Solid State and Materials Research IFW DresdenDresdenGermany
  2. 2.Forschungszentrum Dresden-RossendorfMHD DepartmentDresdenGermany
  3. 3.Applied Mathematics Research Centre, Department of Mathematical SciencesCoventry UniversityCoventryUK
  4. 4.Institute of PhysicsUniversity of LatviaSalaspilsLatvia

Personalised recommendations