Journal of Materials Science

, Volume 45, Issue 5, pp 1354–1360 | Cite as

High strength bio-composite films of poly(vinyl alcohol) reinforced with chemically modified-fly ash

  • Dilip Chandra Deb Nath
  • Sri Bandyopadhyay
  • Aibing Yu
  • Darryl Blackburn
  • Chris White


Fly ash (FA) was chemically modified by activation with sodium hydroxide and used in fabrication of bio-composite films with poly(vinyl alcohol) (PVA) by aqueous casting method. The particle size distribution patterns of modified-fly ash (MFA) were shifted from 2–20 μm to the higher regions 2–40 μm in the analysis chart of Malvern Light Scattering Particle Size Analyser (MLSPSA). On the oxides based chemical analysis by X-ray Fluorescence Spectroscopy (XRF), the compositions of major oxides, SiO2 73.5%, Al2O3 19.2% and Na2O 1.4% were significantly changed to SiO2 52.9%, Al2O3 23.6% and Na2O 5.9%, due to the dissolution and re-crystallisation of new phases which are characterised by X-ray diffraction (XRD). The composite film reinforced with 20 wt% MFA showed up to higher tensile strength 289% (three-fold) compared to those of unmodified FA filled films. The alkali treatment (sodium hydroxide) of FA is a very promising approach to improve the mechanical strength, and hence, further enhance the potential for recycling FA as a suitable filler material in bio-composite materials.


Composite Film Alkali Activation Strong Interfacial Interaction Room Temperature Test Particle Size Distribution Pattern 


  1. 1.
    Ray SS, Okamoto M (2003) Prog Polym Sci 28:1539CrossRefGoogle Scholar
  2. 2.
    Tjong SC, Li RKY, Cheung T (1997) Polym Eng and Sci 37(1):166CrossRefGoogle Scholar
  3. 3.
    Bigg DM (1987) Polym Compos 8(2):115CrossRefGoogle Scholar
  4. 4.
    Chiellini E, Cinelli P, Imam SH, Mao I (2001) Biomacromolecules 2:1029CrossRefPubMedGoogle Scholar
  5. 5.
    Ramaraj B (2007) J Appl Polym Sci 103:909CrossRefGoogle Scholar
  6. 6.
    Strawhecker KE, Manias E (2000) Chem Mater 12:2943CrossRefGoogle Scholar
  7. 7.
    Zhang X, Liu T, Sreekumar TV, Kumar S, Moore VC, Hauge RH, Smalley R (2003) Nano Lett 3(9):1285CrossRefADSGoogle Scholar
  8. 8.
    Bana R, Banthia AK (2007) Polym-Plast Tech Eng 46:821CrossRefGoogle Scholar
  9. 9.
    Weichold O, Moller M (2007) Adv Eng Mater 9(8):712CrossRefGoogle Scholar
  10. 10.
    Tan LS, Mchugh AJ (1996) J Mater Sci 31:3701. doi: 10.1007/BF00352783 CrossRefADSGoogle Scholar
  11. 11.
    Chen X (2002) J Mater Sci Lett 21:1637CrossRefGoogle Scholar
  12. 12.
    Huang H, Gu L, Ozaki Y (2006) Polymer 47:3935CrossRefGoogle Scholar
  13. 13.
    Ward CR, French D (2006) Fuel 85:2268CrossRefGoogle Scholar
  14. 14.
    Alkan C, Arslan M, Cici M, Kaya M, Aksoy M (1995) Resour Conserv Recyl 13:147CrossRefGoogle Scholar
  15. 15.
    Kojima Y, Usuki A, Kawasumi M, Fukushima Y, Okada A, Kurauchi T, Kamigaito O (1993) J Mater Res 8:1179CrossRefADSGoogle Scholar
  16. 16.
    Guhanathan S, Sarojadevi M (2004) Comp Interface 11(1):43CrossRefGoogle Scholar
  17. 17.
    Gupta N, Brar BS, Woldesenbet E (2001) Bull Mater Sci 24(2):219CrossRefGoogle Scholar
  18. 18.
    Nath DCD, Bandyopadhyay S, Yu A, Blackburn D, White C (2010) J Appl Poly Sci 115:1510CrossRefGoogle Scholar
  19. 19.
    Nath DCD, Bandyopadhyay S, Yu A, Blackburn D, White C, Varughese S (2009) J Therm Anal Calorim (in press). doi: 10.1007/s10973-009-0408-6
  20. 20.
    Nath DCD, Bandyopadhyay S, Yu A, Zeng Q, Das T, Blackburn D, White C (2009) J Mater Sci 44:6078. doi: 10.1007/s10853-009-3839-3 CrossRefGoogle Scholar
  21. 21.
    Nath DCD, Bandyopadhyay S, Boughton P, Yu A, Blackburn D, White C (2009) J Appl Poly Sci (in press)Google Scholar
  22. 22.
    Fan Y, Yin S, Wen Z, Zhong J (1999) Cement Concrete Res 29:467CrossRefGoogle Scholar
  23. 23.
    Xie Z, Xi Y (2001) Cement Concrete Res 31:1245CrossRefGoogle Scholar
  24. 24.
    Shi C, Day RL (1995) Cement Concrete Res 25(1):15CrossRefGoogle Scholar
  25. 25.
    Palomo A, Grutzeck MW, Blanco MT (1999) Cement Concrete Res 29:1323CrossRefGoogle Scholar
  26. 26.
    Tanaka H, Furusawa S, Hino R (2002) J Mater Syn Process 10(3):43Google Scholar
  27. 27.
    Palomo A, Blanco MT, Granizo ML, Puertas F, Vazquez T, Grutzeck MW (1999) Cement Concrete Res 29:997CrossRefGoogle Scholar
  28. 28.
    Chang HL, Shih WH (1998) Ind Eng Chem Res 37:71CrossRefGoogle Scholar
  29. 29.
    Jimenez AF, Palomo A (2005) Cement Concrete Res 35:1984CrossRefGoogle Scholar
  30. 30.
    Roode MV, Douglas E, Hemmings RT (1987) Cement Concrete Res 17:183CrossRefGoogle Scholar
  31. 31.
    Mollah MYA, Hess TR, Cocke D (1994) Cement Concrete Res 24:109CrossRefGoogle Scholar
  32. 32.
    Jimenez AF, Palomo A (2003) Fuel 82:2259CrossRefGoogle Scholar
  33. 33.
    Brouwers HJH, Eijk RJV (2003) In: Proceedings of the 11th international congress on the chemistry of cement (ICCC) 11–16 May, Durban, South Africa, Cements contribution to the development in the 21st century. ISBN Number: 0-9584085-8-0Google Scholar
  34. 34.
    Mueller R, Kammler HK, Wegner K, Pratsinis SE (2003) Langmuir 19:160CrossRefGoogle Scholar
  35. 35.
    Paparazzo E (1996) Surf Inter Anal 24:729CrossRefGoogle Scholar
  36. 36.
    Nath DCD, Bandyopadhyay S, Gupta S, Yu A, Blackburn D, White C (2009) App Surf Sci. doi: 10.1016/j.apsusc.2009.11.024
  37. 37.
    Kaczmarek H, Podgorski A (2007) J Photochem Photobiol A 191:209CrossRefGoogle Scholar
  38. 38.
    Nath DCD, Bandyopadhyay S, Yu A, Blackburn D, White C (2009) J Appl Poly Sci (under review)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Dilip Chandra Deb Nath
    • 1
  • Sri Bandyopadhyay
    • 1
  • Aibing Yu
    • 1
  • Darryl Blackburn
    • 2
  • Chris White
    • 2
  1. 1.School of Material Science and EngineeringThe University of New South WalesSydneyAustralia
  2. 2.Research and Ash DevelopmentCement AustraliaBrisbaneAustralia

Personalised recommendations