Advertisement

Journal of Materials Science

, Volume 45, Issue 5, pp 1242–1247 | Cite as

Structural and electrical conductivity studies on undoped and copper-doped nanocrystalline zinc sulphide

  • S. Chellammal
  • S. Sankar
  • S. Selvakumar
  • E. Viswanathan
  • R. Murugaraj
  • K. Sivaji
Article

Abstract

Zinc sulphide (ZnS) and copper-doped zinc sulphide nanocrystallites (ZnS:Cu) of average size 4 and 3 nm, respectively, have been synthesized by chemical precipitation method. Structural and morphological studies using X-ray and high resolution transmission electron microscopy (HRTEM) measurements have confirmed hexagonal structure for the samples. Using impedance spectroscopy, the effect of grain interior and grain boundary regions on the electrical conductivity have been studied at various temperatures. In the high temperature region, the grain boundary contribution to conduction is found to be larger than that of the grain interior region. Further, the activation energies of charge carriers in both the grain interior and grain boundary regions have been determined. The conduction mechanism of copper-doped zinc sulphide nanocrystallites have been studied at various temperatures and the results are reported.

Keywords

High Resolution Transmission Electron Microscopic High Resolution Transmission Electron Microscopic Zinc Sulphide Chemical Precipitation Method ZnSe Nanoparticles 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Chen S, Liu W (1999) Langmuir 15:8100CrossRefGoogle Scholar
  2. 2.
    Nanda J, Sapra S, Sarma DD (2000) Chem Mater 12:1018CrossRefGoogle Scholar
  3. 3.
    Chestnoy N, Hull R, Brus LE (1986) J Chem Phys 85:2237CrossRefADSGoogle Scholar
  4. 4.
    Norris DJ, Yao N, Charnock FT, Kennedy TA (2001) Nano Lett 1:3CrossRefADSGoogle Scholar
  5. 5.
    Chen W, Malm JO, Zwiller V, Huang Y, Liu S, Wailenberg R, Bovin JO, Samuelson L (2000) Phys Rev B 61:11021CrossRefADSGoogle Scholar
  6. 6.
    Soo YL, Ming ZH, Huang SW, Kao YH, Bhargava RN, Gallugher D (1994) Phys Rev B 50:7602CrossRefADSGoogle Scholar
  7. 7.
    Awschalom DD, Kikkawa JM (1999) Phys Today 52:33CrossRefGoogle Scholar
  8. 8.
    Geng BY, Zhang LD, Wang GZ, Xie T, Zhang YG, Meng GW (2004) Appl Phys Lett 84:2157CrossRefADSGoogle Scholar
  9. 9.
    Bhattacharjee B, Ganguli D, Iakoubovesku K, Stesmans A, Chaudhuri S (2002) Bull Mater Sci 25:175CrossRefGoogle Scholar
  10. 10.
    Nanda J, Kuruvilla BA, Sarma DD (1999) Phys Rev B 59:7473CrossRefADSGoogle Scholar
  11. 11.
    Fisher AG (1963) J Electrochem Soc 110:733CrossRefGoogle Scholar
  12. 12.
    Mu J et al (2005) Mater Res Bull 40:2198CrossRefGoogle Scholar
  13. 13.
    Lee S, Song D et al (2004) Mater Lett 58:342CrossRefGoogle Scholar
  14. 14.
    Huang J, Yang Yi, Xue Shanhua et al (1997) Appl Phys Lett 70:2335CrossRefADSGoogle Scholar
  15. 15.
    Fuler ML (1929) Philos Mag 8:658 (version 2.3V)Google Scholar
  16. 16.
    Mazher J, Shrivastav AK, Nandedkar RV, Pandey RK (2004) Nanotechnology 15:572CrossRefADSGoogle Scholar
  17. 17.
    Cullity BD (1978) Elements of X-ray diffraction, 2nd edn. Addison-Wesley, Reading, MAGoogle Scholar
  18. 18.
    Wang M, Sun L, Fu X, Liao C, Yan C (2000) Solid State Commun 115:493CrossRefADSGoogle Scholar
  19. 19.
    Borchert H, Shevchenko EV, Robert A, Mekis I, Kornowski A, Grubel G, Weller H (2005) Langmuir 21:1931CrossRefPubMedGoogle Scholar
  20. 20.
    Macdonald Ross (ed) (1987) Impedance spectroscopy, emphasizing solid materials and systems. Wiley, New YorkGoogle Scholar
  21. 21.
    Cole KS, Cole RH (1941) J Chem Phys 9:341CrossRefADSGoogle Scholar
  22. 22.
    Almond DP, West AR (1983) Solid State Commun 9–10:277Google Scholar
  23. 23.
    Sinclair DC, West AR (1989) J Appl Phys 66:3850CrossRefADSGoogle Scholar
  24. 24.
    Biju V, Abdul Khadar M (2001) Mater Sci Eng A 304–306:814Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • S. Chellammal
    • 1
  • S. Sankar
    • 1
  • S. Selvakumar
    • 2
  • E. Viswanathan
    • 2
  • R. Murugaraj
    • 3
  • K. Sivaji
    • 2
  1. 1.Department of Physics, College of EngineeringAnna UniversityChennaiIndia
  2. 2.Department of Nuclear PhysicsUniversity of MadrasChennaiIndia
  3. 3.Department of Physics, Madras Institute of Technology CampusAnna UniversityChennaiTamil NaduIndia

Personalised recommendations