Advertisement

Journal of Materials Science

, Volume 45, Issue 5, pp 1211–1219 | Cite as

Microstructural effects on the phase transitions and the thermal evolution of elastic and piezoelectric properties in highly dense, submicron-structured NaNbO3 ceramics

  • A. Moure
  • T. Hungría
  • A. Castro
  • L. Pardo
Article

Abstract

The dielectric, piezoelectric and elastic coefficients, as well as the electromechanical coupling factors, of NaNbO3 submicron-structured ceramics have been obtained by an automatic iterative method from impedance measurements at resonance. Poled thin discs were measured from room temperature up to the depoling one, close to 300 °C. Dielectric thermal behaviour was determined also for unpoled ceramics up to the highest phase transition temperature. Ceramics were processed by hot-pressing from mechanically activated precursors. Microstructural effects on the properties are discussed. The suppression of the classical maximum in dielectric permittivity in unpoled ceramics at the phase transition at 370 °C was found when a bimodal distribution of grain sizes, with a population of average grain size of 110 nm in between much coarser grains, is observed. The appearance of a phase transition at 150 °C took place when Na vacancies are minimised. The occurrence of a non-centrosymmetric, ferroelectric phase, in the unpoled ceramic from room temperature to ~300 °C, highly polarisable resulting in high ferro–piezoelectric properties was also observed in the ceramic which presents grain size below 160 nm. Maximum values of k p = 14%, d 31 = −8.7 × 10−12 C N−1 and N p = 3772 Hz m at room temperature, and k p = 18%, d 31 = −25.4 × 10−12 C N−1 and N p = 3722 Hz m at 295 °C were achieved in the best processing conditions of the ceramics.

Keywords

Dielectric Permittivity Grain Size Distribution Piezoelectric Property Ferroelectric Phase Piezoelectric Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Authors thanks the EC project “LEAF” G5RD-CT2001-00431, EC project “PIRAMID” G5RD-CT-2001-00456 and MAT2001-4818E (MCyT Spain), MAT2001-0561, CAM (07N/0076/2002), MAT2004-00868 and MAT2007-61884 projects, COST 528 and COST 539 Actions, Thematic Network CE (contract G5RT-CT2001-05024) and Network of Excellence, 6FP-CE (NMP3-CT-2005-515757). Drs. A. Moure and T. Hungría are indebted to the CSIC (MICINN) of Spain for the “Junta de Ampliación de Estudios” contracts (Refs JAEDOC087 and JAEDOC082, respectively). Thanks are also given to Ms. M. Antón (working under a FINNOVA2003-LEAF grant) for the powder samples preparation. Authors are indebted to late Dr. C. Alemany, for the implementation of the software used.

References

  1. 1.
    Cross E (2004) Nature 432:24CrossRefPubMedADSGoogle Scholar
  2. 2.
    Shrout TR, Zhang SJ (2007) J Electroceram 19:111Google Scholar
  3. 3.
    Jaffe B, Cook WR, Jaffe H (1971) Piezoelectric ceramics. Academic Press, London, 1971Google Scholar
  4. 4.
    Li JF, Wang K, Zhang BP, Zhang LM (2006) J Am Ceram Soc 89:706CrossRefGoogle Scholar
  5. 5.
    Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M (2004) Nature 432:84CrossRefPubMedADSGoogle Scholar
  6. 6.
    Raevski IP, Prosandeev SA (2002) J Phys Chem Solids 63:1939CrossRefADSGoogle Scholar
  7. 7.
    Chen Z, He X, Yu Y, Hu J (2009) Jpn J Appl Phys 48:030204CrossRefADSGoogle Scholar
  8. 8.
    Ma Y, Chen XM (2009) J Appl Phys 105:054107CrossRefADSGoogle Scholar
  9. 9.
    Cross LE, Nicholson B (1955) J Phil Mag Ser 46:453Google Scholar
  10. 10.
    Nitta TJ (1968) J Am Ceram Soc 51:626CrossRefGoogle Scholar
  11. 11.
    Shirane G, Newnham B, Pepinsky R (1954) Phys Rev 96:581CrossRefADSGoogle Scholar
  12. 12.
    Megaw HD (1974) Ferroelectrics 7:87CrossRefGoogle Scholar
  13. 13.
    Arlt G, Hennings D, de With G (1985) J Appl Phys 58:1619CrossRefADSGoogle Scholar
  14. 14.
    Buessem WR, Cross LE, Goswami AK (1966) J Am Ceram Soc 49:33CrossRefGoogle Scholar
  15. 15.
    Shiratori Y, Magrez A, Dornseiffer J, Haegel FH, Pithan C, Waser R (2005) J Phys Chem B 109:20122CrossRefPubMedGoogle Scholar
  16. 16.
    Shiratori Y, Magrez A, Kasezawa K, Kato M, Röhrig S, Peter F, Pithan C, Waser R (2007) J Electroceram 19:273CrossRefGoogle Scholar
  17. 17.
    Shanker V, Samal SL, Pradhan GK, Narayana C, Ganguli AK (2009) Solid State Sci 11:562CrossRefGoogle Scholar
  18. 18.
    Lanfredi S, Lente MH, Eiras JA (2002) Appl Phys Lett 80:2731CrossRefADSGoogle Scholar
  19. 19.
    Jiménez B, Castro A, Pardo L (2003) Appl Phys Lett 82:3940CrossRefADSGoogle Scholar
  20. 20.
    Jimenez R, Hungria T, Castro A, Jimenez-Rioboo R (2008) J Phys D Appl Phys 41:065408CrossRefADSGoogle Scholar
  21. 21.
    Pardo L, Durán-Martín P, Mercurio JP, Nibou L, Jiménez B (1997) J Phys Chem Solids 58:1335CrossRefADSGoogle Scholar
  22. 22.
    Reznitchenko LA, Turik AV, Kuznetsova EM, Sakhnenko VP (2001) J Phys: Condens Matter 13:3875CrossRefADSGoogle Scholar
  23. 23.
    Henson RM, Zeyfang RR, Kiehl KV (1977) J Am Ceram Soc 60:15CrossRefGoogle Scholar
  24. 24.
    Moure A, Hungría T, Castro A, Pardo L (2009) J Eur Ceram Soc 29:2297CrossRefGoogle Scholar
  25. 25.
    Hungria T, Pardo L, Moure A, Castro A (2005) J Alloys Compd 395:166CrossRefGoogle Scholar
  26. 26.
    Ricote J, Alemany C, Pardo L (1995) J Mater Res 10:3194CrossRefADSGoogle Scholar
  27. 27.
    Durán-Martín P (1997) Propiedades ferroeléctricas de materiales cerámicos con estructura tipo Aurivillius de composiciones basadas en Bi2SrNb2O9 Tesis Doctoral UAMGoogle Scholar
  28. 28.
    Alemany C, Gónzalez AM, Pardo L, Jiménez B, Carmona F, Mendiola J (1995) J Phys D Appl Phys 28:945CrossRefADSGoogle Scholar
  29. 29.
    Moure A, Alemany C, Pardo L (2005) J Electrochem Soc 152:F1CrossRefGoogle Scholar
  30. 30.
    Shiratori Y, Magrez A, Fischer W, Pithan C, Waser R (2007) J Phys Chem C 111:18493CrossRefGoogle Scholar
  31. 31.
    Lee MH, Halliyal A, Newnham RE (1989) J Am Ceram Soc 72:986CrossRefGoogle Scholar
  32. 32.
    Wada T, Tsuji K, Saito T, Matsuo Y (2003) Jpn J Appl Phys 42:6110CrossRefADSGoogle Scholar
  33. 33.
    Dawber M, Lichtensteiger C, Cantoni M, Veithen M, Ghosez P, Johnston K, Rabe KM, Triscone JM (2005) Phys Rev Lett 95:177601CrossRefPubMedADSGoogle Scholar
  34. 34.
    Chen J, Feng D (1988) Phys Stat Sol (a) 109:171CrossRefGoogle Scholar
  35. 35.
    Raevskii IP, Reznichenko LA, Smotrakov VG, Eremkin VV, Malitskaya M, Kuznetsova EM, Shilkina LA (2000) Tech Phys Lett 26:744CrossRefADSGoogle Scholar
  36. 36.
    Wang XB, Shen ZX, Hu ZP, Qin L, Tang SH, Kuok MH (1996) J Mol Struct 385:1CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Instituto de Cerámica y Vidrio, CSICMadridSpain
  2. 2.Instituto de Ciencia de Materiales de Madrid, CSICMadridSpain

Personalised recommendations