Skip to main content
Log in

Critical fluid shear stress analysis for cell–polymer adhesion

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A simple methodology to assess cell adhesion on materials was developed. We demonstrated that the cell adhesion strength could be quantified. Using this method, we were able to compare the NIH/3T3 Swiss mouse fibroblasts adhesion strength to poly(methyl methacrylate) and polycarbonate. A controlled fluid shear stress was applied to cells using a parallel plate rotational system. Cells detached from the surface in the radial direction. Results showed that there was a critical radius where the shear stress experienced by the cells equaled the cell adhesion strength. The cells outside this radius were removed while those inside maintained initial confluency. The quantitative evaluation of cell adhesion is beneficial for development of biomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kirkpatrick CJ, Bittinger F, Wagner M, Kohler H, Van Kooten TG, Klein CL, Otto M (1998) Proc Inst Mech Eng 212:75

    Article  CAS  Google Scholar 

  2. Piezzoferrato A, Ciapetti G, Stea S, Cenni E, Arciola CR, Granchi D, Savarino L (1994) Clin Mater 15:173

    Article  Google Scholar 

  3. Garcia AJ, Ducheyne P, Boettiger D (1997) Biomaterials 18:1091

    Article  CAS  Google Scholar 

  4. Hu L, Zhang X, Miller P (2006) J Appl Phys 100:84701

    Article  Google Scholar 

  5. Puecha PH, Poole K, Knebelc D, Muller DJ (2006) Ultramicroscopy 106:637

    Article  Google Scholar 

  6. Martines E, McGhee K, Wilkinson C, Curtis A (2004) IEEE Trans Nanobiosci 3:90

    Article  Google Scholar 

  7. Curtis ASG, Lackie JM (1991) Measuring cell adhesion. Wiley, New York

    Google Scholar 

  8. Anderson AA (2005) Math Med Biol 22:163

    Article  Google Scholar 

  9. Yamamoto A, Mishima S, Maruyama N, Sumita M (2000) J Biomed Mater Res 50:114

    Article  CAS  Google Scholar 

  10. Sivakumar R (1999) Bull Mater Sci 22:647

    Article  CAS  Google Scholar 

  11. Dee KC, Puleo DA, Bizios R (2002) An introduction to tissue-biomaterial interactions. Wiley, Hoboken, NJ

    Book  Google Scholar 

  12. Bongrand P, Claesson PM, Curtis ASG (1994) Studying cell adhesion. Springer-Verlag, Heidelberg

    Book  Google Scholar 

  13. Bundy KJ, Harris LG, Rahn BA, Richards RG (2001) Cell Biol Int 25:289

    Article  CAS  Google Scholar 

  14. Lotz MM, Burdsal CA, Erickson HP, McClay DR (1989) J Cell Biol 109:1795

    Article  CAS  Google Scholar 

  15. Channavajjala LS, Eidsath A, Saxinger WC (1997) J Cell Sci 110:249

    Article  CAS  Google Scholar 

  16. Tateishi T, Ushida T (1995) Cell adhesion strength to bioceramics and morphology, Southern biomedical engineering conference, Proceedings, 14th Southern biomedical engineering conference, April 7–9, 1995. Louisiana State University Medical School, IEEE, Biomedical Research Foundation of Northwest Louisiana, pp 278–281

  17. Lu H, Koo LY, Wang WM, Lauffenburger DA, Griffith LG, Jensen KF (2004) Analyt Chem 75:5257

    Article  Google Scholar 

  18. Brown TD (2000) J Biomech 33:3

    Article  CAS  Google Scholar 

  19. Ming F, Whish WJD, Hubble J, Eisenthal R (1998) Enzyme Microb Technol 22:94

    Article  CAS  Google Scholar 

  20. Buschmann MH, Dieterich P, Adams NA, Schnittler HJ (2005) Biotechnol Bioeng 89:493

    Article  CAS  Google Scholar 

  21. Blackman BR, Barbee KA, Thibault LE (2000) Ann Biomed Eng 28:363

    Article  CAS  Google Scholar 

  22. Malek AM, Ahlquist R, Gibbons GH, Dzau VJ, Izumo S (1995) Meth Cell Sci 17:165

    Article  Google Scholar 

  23. Raposo S, Lima-Costa ME (2006) Biotechnol Lett 28(6):431

    Article  CAS  Google Scholar 

  24. LaPlaca MC, Thibault LE (1997) Ann Biomed Eng 25:665

    Article  CAS  Google Scholar 

  25. Ono O, Ando J, Kamiya A, Kuboki Y, Yasuda H (1991) Cell Struct Funct 16:365

    Article  CAS  Google Scholar 

  26. Horbett TA, Waldburger JJ, Ratner BD, Hoffman AS (1998) J Biomed Mater Res 22:383

    Article  Google Scholar 

  27. Reutelingsperger CPM, Van Gool RGJ, Heijnen V, Frederik P, Lindhout T (1994) J Mater Sci Mater Med 5:361

    Article  Google Scholar 

  28. Hallab NJ, Bundy KJ, O’Connor K, Moses RL, Jacobs JJ (2001) Tissue Eng 7:55

    Article  CAS  Google Scholar 

  29. Alonso S, Lau J, Jaber BL (2008) Biocompatible hemodialysis membranes for acute renal failure (review). In: Cochrane database of systematic reviews. Wiley, New York, pp 1–38

  30. Ando J, Nomura H, Kamiya A (1987) Microvasc Res 33:62

    Article  CAS  Google Scholar 

  31. Oliveira LA, Pecheux J, Restivo AO (1991) Theor Comput Fluid Dyn 2:211

    Article  Google Scholar 

  32. Papadaki M, McIntire LV (1999) Tiss Eng Methods Protocols 18:577

    CAS  Google Scholar 

  33. Hahn LHE, Yamada KM (1979) Cell 18:1043

    Article  CAS  Google Scholar 

  34. Pollard TD, Earnshaw WC (2002) Cell biology. Sounders, Philadelphia, PA

    Google Scholar 

  35. Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD (1994) Molecular biology of the cell. Garland Publishing, New York

    Google Scholar 

  36. Woods A, Couchman JR, Johansson S, Hook M (1986) EMBO J 5:665

    Article  CAS  Google Scholar 

  37. Biren CA, Barr RJ, McCullough JL, Black KS, Hewitt CW (1986) J Invest Dermatol 86:611

    Article  CAS  Google Scholar 

  38. Horbett TA, Schway MB (1988) J Biomed Mater Res 22:763

    Article  CAS  Google Scholar 

  39. Gumbiner BM (1996) Cell 84:345

    Article  CAS  Google Scholar 

  40. Keselowsky BG, Collard DM, Garcia AJ (2003) J Biomed Mater Res 66:247

    Article  Google Scholar 

  41. Underwood PA, Steele JG, Dalton BA (1993) J Cell Sci 104:793

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was in part sponsored by the NSF (0535578), the NSF–Louis Stokes Alliance for Minority Participation, Bridge-to-the-Doctorate Fellowship, the Texas A&M University, and the Texas Engineering Experiment Station (TEES). SEM analysis by Song Du, cell culture experiments assisted by Daniel Munoz Pinto, and support on TA Instruments by Sean Kohl are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Liang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rocha, A., Hahn, M. & Liang, H. Critical fluid shear stress analysis for cell–polymer adhesion. J Mater Sci 45, 811–817 (2010). https://doi.org/10.1007/s10853-009-4004-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-4004-8

Keywords

Navigation