Skip to main content
Log in

A visualization of shear strain in processing by high-pressure torsion

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Optical microscopy was used to examine the shear strain imposed in duplex stainless steel disks during processing by high-pressure torsion (HPT). The results show a double-swirl pattern emerges in the early stages of HPT and the two centres of the swirl move towards the centre of the disk with increasing revolutions. Local shear vortices also develop with increasing numbers of revolutions. At 20 revolutions, there is a uniform shear strain pattern throughout the disk and no local shear vortices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103

    Article  CAS  Google Scholar 

  2. Valiev RZ, Langdon TG (2006) Prog Mater Sci 51:881

    Article  CAS  Google Scholar 

  3. Zhilyaev AP, Langdon TG (2008) Prog Mater Sci 53:893

    Article  CAS  Google Scholar 

  4. Valiev RZ, Alexandrov IV, Zhu YT, Lowe TC (2002) J Mater Res 17:5

    Article  CAS  Google Scholar 

  5. Wang YM, Chen MW, Zhou FH, Ma E (2002) Nature 419:912

    Article  CAS  Google Scholar 

  6. Horita Z, Furukawa M, Nemoto M, Barnes AJ, Langdon TG (2000) Acta Mater 48:3633

    Article  CAS  Google Scholar 

  7. Bridgman PW (1943) J Appl Phys 14:273

    Article  Google Scholar 

  8. Liao XZ, Zhao YH, Zhu YT, Valiev RZ, Gunderov DV (2004) J Appl Phys 96:636

    Article  CAS  Google Scholar 

  9. Liao XZ, Zhao YH, Srinivasan SG, Zhu YT, Valiev RZ, Gunderov DV (2004) Appl Phys Lett 84:592

    Article  CAS  Google Scholar 

  10. Sabirov I, Pippan R (2005) Scripta Mater 52:1293

    Article  CAS  Google Scholar 

  11. Zhilyaev AP, Nurislamova GV, Kim BK, Baró MD, Szpunar JA, Langdon TG (2003) Acta Mater 51:753

    Article  CAS  Google Scholar 

  12. Zhilyaev AP, Oh-ishi K, Langdon TG, McNelley TR (2005) Mater Sci Eng A 410:277

    Article  Google Scholar 

  13. Xu C, Horita Z, Langdon TG (2007) Acta Mater 55:203

    Article  CAS  Google Scholar 

  14. Xu C, Horita Z, Langdon TG (2008) Acta Mater 56:5168

    Article  CAS  Google Scholar 

  15. Todaka Y, Umemoto M, Yin J, Liu Z, Tsuchiya K (2007) Mater Sci Eng A 462:264

    Article  Google Scholar 

  16. Estrin Y, Molotnikov A, Davies CHJ, Lapovok RJ (2008) J Mech Phys Solids 56:1186

    Article  CAS  Google Scholar 

  17. Jiang H, Zhu YT, Butt DP, Alexandrov IV, Lowe TC (2000) Mater Sci Eng A 290:128

    Article  Google Scholar 

  18. Zhilyaev AP, Lee S, Nurislamova GV, Valiev RZ, Langdon TG (2001) Scripta Mater 44:2753

    Article  CAS  Google Scholar 

  19. Yang Z, Welzel U (2005) Mater Lett 59:3406

    Article  CAS  Google Scholar 

  20. Kai M, Horita Z, Langdon TG (2008) Mater Sci Eng A 488:117

    Article  Google Scholar 

  21. Rajulapati KV, Scattergood RO, Murty KL, Horita Z, Langdon TG, Koch CC (2008) Metall Mater Trans A 39A:2528

    Article  CAS  Google Scholar 

  22. Johansson J, Odén M (2000) Metall Mater Trans A 31A:1557

    Article  CAS  Google Scholar 

  23. Edalati K, Horita Z, Langdon TG (2009) Scripta Mater 60:9

    Article  CAS  Google Scholar 

  24. Ivanisenko Y, Lojkowski W, Valiev RZ, Fecht H-J (2003) Acta Mater 51:5555

    Article  CAS  Google Scholar 

  25. Sakai G, Horita Z, Langdon TG (2005) Mater Sci Eng A 393:344

    Article  Google Scholar 

  26. Kawasaki M, Langdon TG (2008) Mater Sci Eng A 498:341

    Article  Google Scholar 

  27. Bertin G (2000) Dynamics of galaxies. Cambridge University Press, Cambridge, UK

    Google Scholar 

  28. Binney J, Tremaine S (2008) In: Spergel DN (ed) Galacitic dynamics, 2nd edn. Princeton University Press, Princeton, NJ, USA

    Chapter  Google Scholar 

  29. Van Dyke M (1982) An album of fluid motion. The Parabolic Press, Stanford, CA, USA

    Google Scholar 

  30. Zeytounian RKh (2004) Theory and applications of viscous fluid flows. Springer-Verlag, Berlin, Germany

    Book  Google Scholar 

  31. Murr LE, Li Y, Flores RD, Trillo EA, McClure JC (1998) Mat Res Innov 2:150

    Article  CAS  Google Scholar 

  32. Zhang HW, Zhang Z, Chen JT (2007) J Mater Process Technol 183:62

    Article  CAS  Google Scholar 

  33. Zhang Z, Chen JT (2008) J Mater Sci 43:222. doi:https://doi.org/10.1007/s10853-007-2129-1

    Article  CAS  Google Scholar 

  34. Guduru PR, Ravichandran G, Rosakis AJ (2001) Phys Rev E 64:036128

    Article  CAS  Google Scholar 

  35. Kelvin (1871) Lord (William Thomson) Phil Mag 42: 362

  36. von Helmholtz HLF (1868) Monthly Reports of the Royal Prussian Academy of Philosophy (Berlin) 23:215

Download references

Acknowledgements

The authors are indebted to Professor J. T. Wang for his extensive discussion of swirling phenomena in nature and they are grateful for scientific and technical input and support from the Australian Microscopy & Microanalysis Research Facility node at the University of Sydney. This project was supported by the Australian Research Council [Grant No. DP0772880 (Y.C., Y.B.W., and X.Z.L.)], the US Army Research Office (Grant No.W911NF-08-1-0201, T.G.L.) and the U.S. DOE IPP program (Y.T.Z.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Z. Liao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, Y., Wang, Y.B., Alhajeri, S.N. et al. A visualization of shear strain in processing by high-pressure torsion. J Mater Sci 45, 765–770 (2010). https://doi.org/10.1007/s10853-009-3998-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3998-2

Keywords

Navigation