Skip to main content
Log in

On the kinetics of nucleation and growth reactions in inhomogeneous systems

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nucleation and growth kinetics in systems with a small degree of inhomogeneity are usually modeled through the KJMA (Kolmogorov–Johnson–Mehl–Avrami) theory, that is by using the local values of the nucleation and growth rates which are proper to the region where the transition takes place. In this study, a general expression for the kinetics is derived which applies, in principle, to any degree of inhomogeneity and conforms to previous approaches. The model is employed to study, analytically, first order corrections to the KJMA formula in the case of simultaneous nucleation and interface-limited growth. It is shown that under these circumstances, the nucleus shape is a circle (two-dimensional) whose center is displaced with respect to the point where the nucleation event occurs. The displacement of the center and the radius of the nucleus are both functions of time. The behavior of the Avrami exponent and the impingement factor as a function of the fraction of transformed volume is investigated and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Strictly speaking the evolution of the local curvature of the nucleus, under interface-limited growth, is governed by the equation \( {\frac{\text{d}\Re }{{\rm d}t}} = {\frac{\partial \Re }{\partial t}} + {\frac{\partial \Re }{\partial x}}\upsilon_{x} \equiv \alpha c(x) \) where \( \upsilon_{x} = {\frac{\text{d}\Re }{{\rm {d}}t}}\hat{n}\hat{x} \) is the local growth rate along x and \( \hat{n} \) is the normal to the nucleus surface. Combining these equations one gets \( {\frac{\partial \Re }{\partial t}} = \alpha c(x)\left[ {1 + {\frac{\partial \Re }{\partial x}}\,{\frac{\partial y/\partial x}{{\sqrt {1 + (\partial y/\partial x)^{2} } }}}} \right]. \) Equation 10 holds provided \( \partial \Re /\partial x \ll 1. \) It can be proved that this condition is fulfilled in the case r0/λ ≪ 1 here considered.

References

  1. Schmalzried H (1974) Solid state reactions. Academic Press, INC, New York, London

    Google Scholar 

  2. Cahn RW Haasen P (1983) In: Cahn RW, Haasen P (eds) Physical metallurgy part II. North Holland Physics Publishing, Amsterdam, Oxford, New York, Tokyo

  3. Crespo D, Pradell T (1996) Phys Rev B 54:3101

    Article  CAS  Google Scholar 

  4. Rickman JM, Tong WS, Barmak K (1997) Acta Mater 45:1153

    Article  CAS  Google Scholar 

  5. Pineda E, Pradell T, Crespo D (2001) J Non-Cryst Solids 287:88

    Article  CAS  Google Scholar 

  6. Farjas J, Roura P (2008) Phys Rev B 78:144101

    Article  Google Scholar 

  7. Klikovits J, Schmid M, Gustafson J, Mikkelsen A, Resta A, Lundgren E, Andersen JN, Varga P (2006) J Phys Chem B 110

  8. Kolmogorov AN (1937) Bull Acad Sci URSS 3:355

    Google Scholar 

  9. Johnson WA, Mehl RF (1939) Trans Am Inst Min Metall Pet Eng 135:416

    Google Scholar 

  10. Avrami M (1939) J Chem Phys 7:1103

    Article  CAS  Google Scholar 

  11. Avrami M (1940) J Chem Phys 8:212

    Article  CAS  Google Scholar 

  12. Fanfoni M, Tomellini M (2005) J Phys Condens Matter 17:R571

    Article  CAS  Google Scholar 

  13. Rios PR, Oliveira JCPT, Oliveira VT, Castro JA (2006) Mater Res 9:165

    Article  CAS  Google Scholar 

  14. Uebele P, Hermann H (1996) Model Simul Mater Sci Eng 4:203

    Article  CAS  Google Scholar 

  15. Birnie DP, Weinberg MC (1995) J Chem Phys 103:3742

    Article  CAS  Google Scholar 

  16. Weinberg MC, Birnie DP (1996) J Non-Cryst Solids 202:290

    Article  CAS  Google Scholar 

  17. Pusztai T, Gránásy L (1998) Phys Rev B 57:141

    Article  Google Scholar 

  18. Kooi BJ (2004) Phys Rev B 70:224108

    Article  Google Scholar 

  19. Burbelko AA, Fraś E, Kapturkiewicz W (2005) Mater Sci Eng A 413:429

    Article  Google Scholar 

  20. Shepilov MP (2004) Glass Phys Chem 30:291

    Article  CAS  Google Scholar 

  21. Shepilov MP, Baik BS (1994) J Non-Cryst Solids 171:141

    Article  CAS  Google Scholar 

  22. Farjas J, Roura P (2007) Phys Rev B 75:184112

    Article  Google Scholar 

  23. Levine LE, Lakshmi Narayan K, Kelton KF (1997) J Mater Res 12:124

    Article  CAS  Google Scholar 

  24. Berg BA, Dubey S (2008) Phys Rev Lett 100:165702

    Article  Google Scholar 

  25. Todinov MT (2000) Acta Mater 48:4217

    Article  CAS  Google Scholar 

  26. Alekseeckin NV (2001) J Phys Condens Matter 13:3083

    Article  Google Scholar 

  27. Grabke HJ (2003) Mater Corros 54:736

    Article  CAS  Google Scholar 

  28. Starink MJ (2001) J Mater Sci 36:4433. doi:https://doi.org/10.1023/A:1017974517877

    Article  CAS  Google Scholar 

  29. Starink MJ (2004) Int Mater Rev 49:191

    Article  CAS  Google Scholar 

  30. Sun NX, Liu XD, Lu K (1996) Scripta Mater 34:1201

    Article  CAS  Google Scholar 

  31. Avrami M (1941) J Chem Phys 9:177

    Article  CAS  Google Scholar 

  32. Fanfoni M, Tomellini M (1998) Il Nuovo Cimento 20:1171

    Article  Google Scholar 

  33. Asahi N, Miyashita A (1988) Jpn J Appl Phys 27:875

    Article  CAS  Google Scholar 

  34. Pradell T, Crespo D, Clavaguera N, Clavaguera-Mora MT (1998) J Phys Condens Matter 10:3833

    Article  CAS  Google Scholar 

  35. Zhou F, He K, Sui M, Lai Z (1994) Mater Sci Eng A 181/182:1419

    Article  Google Scholar 

  36. Saada S, Barrat S, Bauer-Grosse E (2000) Diam Relat Mater 9:300

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Tomellini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomellini, M. On the kinetics of nucleation and growth reactions in inhomogeneous systems. J Mater Sci 45, 733–743 (2010). https://doi.org/10.1007/s10853-009-3992-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3992-8

Keywords

Navigation