Skip to main content
Log in

A comparative study of different solvothermal methods for the synthesis of Sn2+-doped BaTiO3 powders and their dielectric properties

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Ternary oxides containing Sn2+ are rare and difficult to prepare by the conventional solid state reactions due to the disproportionation of Sn2+ to Sn4+ and Sn at high temperatures. In this article, Sn2+-doped barium titanate, Ba1−xSnxTiO3 (x = 0.00, 0.02, 0.05, and 0.10) nanopowders were successfully synthesized at a moderate temperature by a microwave-assisted solvothermal reaction (MSR) and a solvothermal reaction with rolling (SRR). The powders obtained using the MSR and SRR consisted of nanoparticles of 20–50 nm and 100–120 nm in diameter, respectively. The dielectric constant of the sample increased by doping with a small amount of Sn2+ (x ≤ 0.05), but decreased by doping in excess amounts of it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hosogi Y, Shimodaira Y, Kato H, Kobayashi H, Kudo A (2008) Chem Mater 20:1299. doi:https://doi.org/10.1021/cm071588c

    Article  CAS  Google Scholar 

  2. Mizoguchi H, Wattiaux A, Kykyneshi R, Tate J, Sleight AW, Subramanian MA (2008) Mater Res Bull 43:1943. doi:https://doi.org/10.1016/j.materresbull.2008.03.011

    Article  CAS  Google Scholar 

  3. Konishi Y, Ohsawa M, Yonezawa Y, Tanimura Y, Chikyow T, Wakisaka T, Koinuma H, Miyamoto A, Kubo M, Sasata K (2003) Mater Res Soc Symp Proc 748:U3.13.1

    Google Scholar 

  4. Hosogi Y, Tanabe K, Kato H, Kobayashi H, Kudo A (2004) Chem Lett 33:28. doi:https://doi.org/10.1246/cl.2004.28

    Article  CAS  Google Scholar 

  5. Konisi Y, Osawa M, Yonezawa Y (2003) Fuji Jiho 76(4):241 in Japanese

    Google Scholar 

  6. Jeitschko W, Sleight AW (1974) Acta Crystallogr Cryst Chem B30:2088. doi:https://doi.org/10.1107/S0567740874006534

    Article  Google Scholar 

  7. Ercit TS, Cerny P (1988) Can Mineral 26:899

    CAS  Google Scholar 

  8. Kumada N, Yonesaki Y, Takei T, Kinomura N, Wada S (2009) Mater Res Bull 44:1298. doi:https://doi.org/10.1016/j.materresbull.2008.12.017

    Article  CAS  Google Scholar 

  9. Xie YH, Yin S, Yamane H, Hashimoto T, Machida H, Sato T (2008) Chem Mater 20:4931. doi:https://doi.org/10.1021/cm800277b

    Article  CAS  Google Scholar 

  10. Xie YH, Yin S, Hashimoto T, Kimura H, Sato T (2009) J Mater Sci 44:4834. doi:https://doi.org/10.1007/s10853-009-3737-8

    Article  CAS  Google Scholar 

  11. Polla DL, Lorraine FF (1998) Ann Rev Mater Sci 28:563. doi:https://doi.org/10.1146/annurev.matsci.28.1.563

    Article  CAS  Google Scholar 

  12. Takenaka T, Nagata H (2005) J Eur Ceram Soc 25:2693. doi:https://doi.org/10.1016/j.jeurceramsoc.2005.03.125

    Article  CAS  Google Scholar 

  13. Mark AM, Elliott BS (2003) J Eur Ceram Soc 23:2143. doi:https://doi.org/10.1016/S0955-2219(03)00022-0

    Article  Google Scholar 

  14. Xinhua Z, Jianmin Z, Shunhua Z, Zhiguo L, Naiben M, Dietrich H (2005) J Cryst Growth 283:553. doi:https://doi.org/10.1016/j.jcrysgro.2005.05.080

    Article  Google Scholar 

  15. Zhonghua Y, Hanxing L, Yan L, Zhaohui W, Zongyang S, Yang L, Minghe C (2008) Mater Chem Phys 109:475. doi:https://doi.org/10.1016/j.matchemphys2007.12.019

    Article  Google Scholar 

  16. Rath MK, Pradhan GK, Pandey B, Verma HC, Roul BK, Anand S (2008) Mater Lett 62:2136. doi:https://doi.org/10.1016/j.matlet.2007.11.033

    Article  Google Scholar 

  17. Yong-Il K, Kwon-Sang R, Seung-Hoon N, Jong-Seo P (2006) Curr Appl Phys 6S1:e266. doi:https://doi.org/10.1016/j.cap.2006.01.053

    Google Scholar 

  18. Yuji H, Kiyoka T, Cihangir D, Kimiysu S, Takaaki N, Koji W (2008) Mater Sci Eng A 475:57. doi:https://doi.org/10.1016/j.msea.2006.12.138

    Article  Google Scholar 

  19. Srimala S, Ahmad FMN, Zainal AA, Radzali O, Anthony W (2008) J Mater Process Technol 195:171. doi:https://doi.org/10.1016/j.jmatprotec.2007.04.120

    Article  Google Scholar 

  20. Hosseini M, Moosavi SJ (2000) Ceram Int 26:541. doi:https://doi.org/10.1016/S0272-8842(99)00092-9

    Article  CAS  Google Scholar 

  21. Wang YG, Zhong WL, Zhang PL (1994) Solid State Commun 92(6):519. doi: 0038-1098(94)00498-6

    Article  CAS  Google Scholar 

  22. Arlt G, Hennings D, de With G (1985) J Appl Phys 58(4):1619

    Article  CAS  Google Scholar 

  23. Lin S, Lü T, Jin C, Wang X (2006) Phys Rev B 74:134115

    Article  Google Scholar 

  24. Zhao Z, Buscaglia V, Viviani M, Buscaglia MT, Mitoseriu L, Testino A, Nygren M, Johnsson M, Nanni P (2004) Phys Rev B 70:024107. doi:https://doi.org/10.1103/PhysRevB.70.024107

    Article  Google Scholar 

  25. Subbarao EC (1998) Colloids Surf A 133:3. doi:https://doi.org/10.1016/S0927-7757(97)00104-0

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was partially supported by the Ministry of Education, Culture, Sports, Science and Technology, “Special Education and Research Expenses, Post-Silicon Materials and Devices Research Alliance”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yahong Xie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, Y., Yin, S., Hashimoto, T. et al. A comparative study of different solvothermal methods for the synthesis of Sn2+-doped BaTiO3 powders and their dielectric properties. J Mater Sci 45, 725–732 (2010). https://doi.org/10.1007/s10853-009-3991-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3991-9

Keywords

Navigation