Skip to main content
Log in

Electrokinetic properties of Nd:YAG nanopowder and a high concentration slurry with ammonium poly(acrylic acid) as dispersant

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The electrokinetic properties of Nd:YAG nanopowder with particles of about 40 nm in diameter were investigated by measuring the zeta potential of a stable YAG (Y3Al5O12) aqueous slurry. Ammonium poly(acrylic acid) polyelectrolyte was used as dispersant to adjust the electrokinetic properties of the Nd:YAG slurry. The effect of the pH of the slurry and of the polyelectrolyte concentration on the stability of the suspension are discussed in this study. The optimal pH value and the amount of dispersant needed to obtain a stable Nd:YAG nanoparticle slurry were determined. Highly consistent Nd:YAG nanoparticle slurries with optimal pH and dispersant concentration were prepared by ball milling. The rheological behavior of Nd:YAG slip with different solid loading (60–70 wt%) has been studied by measuring the viscosity and shear stress as a function of shear rate. Slip with solid loadings of 65 wt% shows near-Newtonian behavior but becomes non-Newtonian with typical shear-thinning behavior above this solid loading value. The density and microstructure of the cast product bears a direct relationship to the state of the slip induced by alternation of the pH and the concentration of the dispersant as well as the solid loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cockayne B (1985) J Less Common Met 144:119

    Google Scholar 

  2. Xu WL, Yue TM, Man HC (2008) J Mater Sci 43:942. doi:https://doi.org/10.1007/s10853-007-2208-3

    Article  CAS  Google Scholar 

  3. Ahmed MA, Khalil AAI, Solyman S (2007) J Mater Sci 42:4098. doi:https://doi.org/10.1007/s10853-006-1151-z

    Article  CAS  Google Scholar 

  4. Corman GS (1991) Ceram Eng Sci Proc 12(9–10):1745

    Article  CAS  Google Scholar 

  5. Li J, Wu YS, Pan YB, Kou HM, Shi Y, Guo JK (2008) Ceram Int 34:1675

    Article  CAS  Google Scholar 

  6. Feng T, Shi JL, Jiang DY (2008) J Eur Ceram Soc 28(13):2539

    Article  CAS  Google Scholar 

  7. Pradhan AK, Zhang K, Loutts GB (2004) Mater Res Bull 39:1291

    Article  CAS  Google Scholar 

  8. Zhang HS, Han H, Su CH, Zhang HB, Hou ZX, Song Q (2007) Mater Sci Eng A 445–446:180

    Article  CAS  Google Scholar 

  9. Li J, Wu YS, Pan YB, Guo JK (2006) J Non-Cryst Solids 352:2404

    Article  CAS  Google Scholar 

  10. Vaidhyanathan B, Binner JGP (2006) J Mater Sci 41:5954. doi:https://doi.org/10.1007/s10853-006-0260-z

    Article  CAS  Google Scholar 

  11. Ikesue A, Kinooshita T, Kamata K (1995) J Am Ceram Soc 78:1033

    Article  CAS  Google Scholar 

  12. Even-Zur OT, Chaim R (2009) J Mater Sci 44:2063. doi:https://doi.org/10.1007/s10853-009-3300-7

    Article  CAS  Google Scholar 

  13. Li X, Li Q (2008) Ceram Int 34:397

    Article  CAS  Google Scholar 

  14. Kopylov YL, Kravchenko VB, Bagayev SN, Shemet VV, Komarov AA, Karban OV, Kaminskii AA (2009) Opt Mater 31(5):707

    Article  CAS  Google Scholar 

  15. Esposito L, Piancastelli A (2009) J Eur Ceram Soc 29(2):317

    Article  CAS  Google Scholar 

  16. Appiagyei KA, Messing GL, Dumm JQ (2008) Ceram Int 34(5):1309

    Article  CAS  Google Scholar 

  17. Lu J, Ueda K, Yagi H, Yanagitani T, Akiyama Y, Kaminskii AA (2002) J Alloy Compd 341:220

    Article  CAS  Google Scholar 

  18. Yagi H, Yanagitani T, Ueda K (2006) J Alloy Compd 421:195

    Article  CAS  Google Scholar 

  19. Kochawattana S, Stevenson A, Lee SH, Ramirez M, Gopalan V, Dumm J, Castillo VK, Quarles GJ, Messing GL (2008) J Eur Ceram Soc 28(7):1527

    Article  CAS  Google Scholar 

  20. Naito M, Fukuda Y, Yoshikawa N, Kamiya H, Tsubaki J (1997) J Eur Ceram Soc 17:251

    Article  CAS  Google Scholar 

  21. Hirata Y (1997) Ceram Int 23:93

    Article  CAS  Google Scholar 

  22. Li Y, Lin J, Gao JQ, Qiao GJ, Wang HJ (2008) Mater Sci Eng A 483–484:676

    Article  CAS  Google Scholar 

  23. Kopylov YL, Kravchenko VB, Komarov AA, Lebedeva ZM, Shemet VV (2007) Opt Mater 29:1236

    Article  CAS  Google Scholar 

  24. Hotta YJ, Omura NK, Sato K, Watari KJ (2007) J Eur Ceram Soc 27:753

    Article  CAS  Google Scholar 

  25. Garrido LB, Agletti EF (2001) J Eur Ceram Soc 21:2259

    Article  CAS  Google Scholar 

  26. Moreno R, Salomoni A, Stamenkovic I (1997) J Eur Ceram Soc 17:327

    Article  CAS  Google Scholar 

  27. Tsetsekou A, Agrafiotis C, Milias A (2001) J Eur Ceram Soc 21:363

    Article  CAS  Google Scholar 

  28. Rao RR, Roopa HN, Kannan TS (1999) Ceram Int 25:223

    Article  CAS  Google Scholar 

  29. Houivet D, Fallah JE, Haussonne JM (2002) J Am Ceram Soc 85:321

    Article  CAS  Google Scholar 

  30. Lu K, Kessler CS, Davis RM (2006) J Am Ceram Soc 89:2459

    Article  CAS  Google Scholar 

  31. Li X, Liu H, Wang JY, Cui HM, Han F (2004) Opt Mater 25:407

    Article  CAS  Google Scholar 

  32. Parfitt LR (1981) Dispersion of powders in liquids with special reference to pigments. Applied Science Publishers, London, UK

    Google Scholar 

  33. Wang JQ, Xu HY, Wang Y, Yue YL (2006) J Rare Earth 24:284

    Article  Google Scholar 

  34. Wang HZ, Gao L, Shen ZJ, Nygren M (2001) J Eur Ceram Soc 21:779

    Article  CAS  Google Scholar 

  35. Schindler PW (1981) Surface complexes at oxide–water interface. Ann Arbor Science Publishers, Ann Arbor, MI

    Google Scholar 

  36. Parks GA (1965) Chem Rev 65:177

    Article  CAS  Google Scholar 

  37. Yoon RH (1979) J Colloid Sci 70:483

    Article  CAS  Google Scholar 

  38. Parks GA, DeBruyn PL (1962) J Phys Chem 66:973

    Article  Google Scholar 

  39. Everett DH (1988) Basic principles of colloid science. The Royal Society of Chemistry, Cambridge

    Book  Google Scholar 

  40. Cesarano IIJ, Aksay IA, Bleier A (1988) J Am Ceram Soc 71:250

    Article  CAS  Google Scholar 

  41. Yu X, Somasundaran P (1996) J Colloid Interface Sci 177:283

    Article  CAS  Google Scholar 

  42. Bergström L (1994) In: Pugh RJ, Bergström L (eds) Surface and colloid chemistry, advanced processing. Marcel Dekker Inc, NY, USA, p 193

    Google Scholar 

  43. Barnes HA, Hutton JF, Walters K (1989) An introduction to rheology. Rheology Series 3. Elsevier Science Publishers B.V., Amsterdam, The Netherlands

    Google Scholar 

  44. Moreno R (2001) In: Messing GL (ed) The encyclopedia of materials. Science and technology.III. Structural materials. Ceramic processing. Elsevier Science, UK, p 8192

    Chapter  Google Scholar 

  45. Moreno R (2005) Reología de suspensiones cerámicas, Biblioteca de Ciencias, vol 17. CSIC, Madrid, Spain

    Google Scholar 

  46. Sacks MD (1984) Am Ceram Soc Bull 63:1510

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by an NSFC (50872070, 50702031, Innovation Research Group, 50721002), the 973 Program of China (G2004CB619002, 2007CB613302), and the Program of Introducing Talents of Discipline to Universities in China (111 program). Thanks to R. I. Boughton at the Bowling Green State University for English revision on this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lv, YH., Liu, H., Sang, YH. et al. Electrokinetic properties of Nd:YAG nanopowder and a high concentration slurry with ammonium poly(acrylic acid) as dispersant. J Mater Sci 45, 706–712 (2010). https://doi.org/10.1007/s10853-009-3988-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3988-4

Keywords

Navigation