Journal of Materials Science

, Volume 45, Issue 3, pp 706–712 | Cite as

Electrokinetic properties of Nd:YAG nanopowder and a high concentration slurry with ammonium poly(acrylic acid) as dispersant

  • Yao-Hui Lv
  • Hong Liu
  • Yuan-Hua Sang
  • Shu-Jiang Liu
  • Ting Chen
  • Hai-Ming Qin
  • Ji-Yang Wang


The electrokinetic properties of Nd:YAG nanopowder with particles of about 40 nm in diameter were investigated by measuring the zeta potential of a stable YAG (Y3Al5O12) aqueous slurry. Ammonium poly(acrylic acid) polyelectrolyte was used as dispersant to adjust the electrokinetic properties of the Nd:YAG slurry. The effect of the pH of the slurry and of the polyelectrolyte concentration on the stability of the suspension are discussed in this study. The optimal pH value and the amount of dispersant needed to obtain a stable Nd:YAG nanoparticle slurry were determined. Highly consistent Nd:YAG nanoparticle slurries with optimal pH and dispersant concentration were prepared by ball milling. The rheological behavior of Nd:YAG slip with different solid loading (60–70 wt%) has been studied by measuring the viscosity and shear stress as a function of shear rate. Slip with solid loadings of 65 wt% shows near-Newtonian behavior but becomes non-Newtonian with typical shear-thinning behavior above this solid loading value. The density and microstructure of the cast product bears a direct relationship to the state of the slip induced by alternation of the pH and the concentration of the dispersant as well as the solid loading.


Zeta Potential Rheological Behavior Green Body Solid Loading High Solid Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was supported by an NSFC (50872070, 50702031, Innovation Research Group, 50721002), the 973 Program of China (G2004CB619002, 2007CB613302), and the Program of Introducing Talents of Discipline to Universities in China (111 program). Thanks to R. I. Boughton at the Bowling Green State University for English revision on this paper.


  1. 1.
    Cockayne B (1985) J Less Common Met 144:119Google Scholar
  2. 2.
    Xu WL, Yue TM, Man HC (2008) J Mater Sci 43:942. doi: 10.1007/s10853-007-2208-3 CrossRefADSGoogle Scholar
  3. 3.
    Ahmed MA, Khalil AAI, Solyman S (2007) J Mater Sci 42:4098. doi: 10.1007/s10853-006-1151-z CrossRefADSGoogle Scholar
  4. 4.
    Corman GS (1991) Ceram Eng Sci Proc 12(9–10):1745CrossRefGoogle Scholar
  5. 5.
    Li J, Wu YS, Pan YB, Kou HM, Shi Y, Guo JK (2008) Ceram Int 34:1675CrossRefGoogle Scholar
  6. 6.
    Feng T, Shi JL, Jiang DY (2008) J Eur Ceram Soc 28(13):2539CrossRefGoogle Scholar
  7. 7.
    Pradhan AK, Zhang K, Loutts GB (2004) Mater Res Bull 39:1291CrossRefGoogle Scholar
  8. 8.
    Zhang HS, Han H, Su CH, Zhang HB, Hou ZX, Song Q (2007) Mater Sci Eng A 445–446:180Google Scholar
  9. 9.
    Li J, Wu YS, Pan YB, Guo JK (2006) J Non-Cryst Solids 352:2404CrossRefADSGoogle Scholar
  10. 10.
    Vaidhyanathan B, Binner JGP (2006) J Mater Sci 41:5954. doi: 10.1007/s10853-006-0260-z CrossRefADSGoogle Scholar
  11. 11.
    Ikesue A, Kinooshita T, Kamata K (1995) J Am Ceram Soc 78:1033CrossRefADSGoogle Scholar
  12. 12.
    Even-Zur OT, Chaim R (2009) J Mater Sci 44:2063. doi: 10.1007/s10853-009-3300-7 CrossRefADSGoogle Scholar
  13. 13.
    Li X, Li Q (2008) Ceram Int 34:397CrossRefGoogle Scholar
  14. 14.
    Kopylov YL, Kravchenko VB, Bagayev SN, Shemet VV, Komarov AA, Karban OV, Kaminskii AA (2009) Opt Mater 31(5):707CrossRefADSGoogle Scholar
  15. 15.
    Esposito L, Piancastelli A (2009) J Eur Ceram Soc 29(2):317CrossRefGoogle Scholar
  16. 16.
    Appiagyei KA, Messing GL, Dumm JQ (2008) Ceram Int 34(5):1309CrossRefGoogle Scholar
  17. 17.
    Lu J, Ueda K, Yagi H, Yanagitani T, Akiyama Y, Kaminskii AA (2002) J Alloy Compd 341:220CrossRefGoogle Scholar
  18. 18.
    Yagi H, Yanagitani T, Ueda K (2006) J Alloy Compd 421:195CrossRefGoogle Scholar
  19. 19.
    Kochawattana S, Stevenson A, Lee SH, Ramirez M, Gopalan V, Dumm J, Castillo VK, Quarles GJ, Messing GL (2008) J Eur Ceram Soc 28(7):1527CrossRefGoogle Scholar
  20. 20.
    Naito M, Fukuda Y, Yoshikawa N, Kamiya H, Tsubaki J (1997) J Eur Ceram Soc 17:251CrossRefGoogle Scholar
  21. 21.
    Hirata Y (1997) Ceram Int 23:93CrossRefGoogle Scholar
  22. 22.
    Li Y, Lin J, Gao JQ, Qiao GJ, Wang HJ (2008) Mater Sci Eng A 483–484:676Google Scholar
  23. 23.
    Kopylov YL, Kravchenko VB, Komarov AA, Lebedeva ZM, Shemet VV (2007) Opt Mater 29:1236CrossRefADSGoogle Scholar
  24. 24.
    Hotta YJ, Omura NK, Sato K, Watari KJ (2007) J Eur Ceram Soc 27:753CrossRefGoogle Scholar
  25. 25.
    Garrido LB, Agletti EF (2001) J Eur Ceram Soc 21:2259CrossRefGoogle Scholar
  26. 26.
    Moreno R, Salomoni A, Stamenkovic I (1997) J Eur Ceram Soc 17:327CrossRefGoogle Scholar
  27. 27.
    Tsetsekou A, Agrafiotis C, Milias A (2001) J Eur Ceram Soc 21:363CrossRefGoogle Scholar
  28. 28.
    Rao RR, Roopa HN, Kannan TS (1999) Ceram Int 25:223CrossRefGoogle Scholar
  29. 29.
    Houivet D, Fallah JE, Haussonne JM (2002) J Am Ceram Soc 85:321CrossRefGoogle Scholar
  30. 30.
    Lu K, Kessler CS, Davis RM (2006) J Am Ceram Soc 89:2459CrossRefGoogle Scholar
  31. 31.
    Li X, Liu H, Wang JY, Cui HM, Han F (2004) Opt Mater 25:407CrossRefADSGoogle Scholar
  32. 32.
    Parfitt LR (1981) Dispersion of powders in liquids with special reference to pigments. Applied Science Publishers, London, UKGoogle Scholar
  33. 33.
    Wang JQ, Xu HY, Wang Y, Yue YL (2006) J Rare Earth 24:284CrossRefGoogle Scholar
  34. 34.
    Wang HZ, Gao L, Shen ZJ, Nygren M (2001) J Eur Ceram Soc 21:779CrossRefGoogle Scholar
  35. 35.
    Schindler PW (1981) Surface complexes at oxide–water interface. Ann Arbor Science Publishers, Ann Arbor, MIGoogle Scholar
  36. 36.
    Parks GA (1965) Chem Rev 65:177CrossRefGoogle Scholar
  37. 37.
    Yoon RH (1979) J Colloid Sci 70:483CrossRefGoogle Scholar
  38. 38.
    Parks GA, DeBruyn PL (1962) J Phys Chem 66:973CrossRefGoogle Scholar
  39. 39.
    Everett DH (1988) Basic principles of colloid science. The Royal Society of Chemistry, CambridgeGoogle Scholar
  40. 40.
    Cesarano IIJ, Aksay IA, Bleier A (1988) J Am Ceram Soc 71:250CrossRefGoogle Scholar
  41. 41.
    Yu X, Somasundaran P (1996) J Colloid Interface Sci 177:283CrossRefGoogle Scholar
  42. 42.
    Bergström L (1994) In: Pugh RJ, Bergström L (eds) Surface and colloid chemistry, advanced processing. Marcel Dekker Inc, NY, USA, p 193Google Scholar
  43. 43.
    Barnes HA, Hutton JF, Walters K (1989) An introduction to rheology. Rheology Series 3. Elsevier Science Publishers B.V., Amsterdam, The NetherlandsGoogle Scholar
  44. 44.
    Moreno R (2001) In: Messing GL (ed) The encyclopedia of materials. Science and technology.III. Structural materials. Ceramic processing. Elsevier Science, UK, p 8192Google Scholar
  45. 45.
    Moreno R (2005) Reología de suspensiones cerámicas, Biblioteca de Ciencias, vol 17. CSIC, Madrid, SpainGoogle Scholar
  46. 46.
    Sacks MD (1984) Am Ceram Soc Bull 63:1510Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Yao-Hui Lv
    • 1
  • Hong Liu
    • 1
  • Yuan-Hua Sang
    • 1
  • Shu-Jiang Liu
    • 1
  • Ting Chen
    • 1
  • Hai-Ming Qin
    • 1
  • Ji-Yang Wang
    • 1
  1. 1.State Key Laboratory of Crystal MaterialsShandong UniversityJinanChina

Personalised recommendations