Journal of Materials Science

, Volume 45, Issue 3, pp 688–700 | Cite as

Cyclic oxidation and wear of tungsten rods in contact with glass in atmospheric air

  • C. DorgansEmail author
  • J.-M. Chaix
  • L. Boulangé
  • Y. Bréchet


Tungsten tools used in the glass-forming industry undergo complex damage process resulting from cyclic contact with molten glass and atmospheric air and from friction between glass and tungsten. The damage process involving oxide scale growth and wear has been studied on W rods of two different diameters, in contact or not with glass, with different friction velocities. Damage is characterized quantitatively and the contributions of oxidation, borosilicate glass–tungsten reaction, and wear are discussed.


Tungsten Oxide Scale Tungsten Oxide Environmental Scan Electron Microscope Cyclic Oxidation 


  1. 1.
    Lassner E, Schubert W-D (1999) Tungsten, properties, chemistry, technology of the element alloys and chemical compounds. Kluwer Academic/Plenum Publishers, New YorkGoogle Scholar
  2. 2.
    Yih SWH, Wang CT (1979) Tungsten sources, metallurgy properties and applications. Plenum Press, New YorkGoogle Scholar
  3. 3.
    Jepson WB, Aylmore DW (1961) J Electrochem Soc 108(10):942CrossRefGoogle Scholar
  4. 4.
    Gulbransen EA, Andrew KF (1960) J Electrochem Soc 107(7):619CrossRefGoogle Scholar
  5. 5.
    Kellett EA, Rogers SE (1963) J Electrochem Soc 110(6):502CrossRefGoogle Scholar
  6. 6.
    Ong JN Jr (1962) J Electrochem Soc 109(4):284CrossRefGoogle Scholar
  7. 7.
    Webb WW, Norton JT, Wagner C (1956) J Electrochem Soc 103(2):107CrossRefGoogle Scholar
  8. 8.
    Baur JP, Bridges DW, Fassell WM (1956) J Electrochem Soc 103(5):266CrossRefGoogle Scholar
  9. 9.
    Smolik GR, Pawelko RJ, Anderl RA, Petti DA (2001) Fusion Eng Des 54:583CrossRefGoogle Scholar
  10. 10.
    Greene GA, Finfrock CC (2001) Exp Thermal Fluid Sci 25:87CrossRefGoogle Scholar
  11. 11.
    Greene GA, Finfrock CC (2002) Exp Thermal Fluid Sci 26:917CrossRefGoogle Scholar
  12. 12.
    Adib Hajbagheri F, Kashani Bozorg SF, Amadeh AA (2008) J Mater Sci 43:5720. doi: CrossRefGoogle Scholar
  13. 13.
    Gialanella S, Ischia G, Straffelini G (2008) J Mater Sci 43:1701. doi: CrossRefGoogle Scholar
  14. 14.
    Zhang XP, Zhao ZP, Wu FM, Wang YL, Wu J (2007) J Mater Sci 42:8523. doi: CrossRefGoogle Scholar
  15. 15.
    Musket RG (1970) J Less-Common Met 22:175CrossRefGoogle Scholar
  16. 16.
    Takusagawa F, Jacobson RA (1976) J Solid State Chem 18:2163CrossRefGoogle Scholar
  17. 17.
    Booth J, Ekstörn T, Iguchi E, Tilley RTD (1982) J Solid State Chem 41:293CrossRefGoogle Scholar
  18. 18.
    Ledieu A (2004) Altération par l’eau des verres borosilicates: expériences, modélisation et simulations Monte Carlo, Thesis, Palaiseau, p 26Google Scholar
  19. 19.
    Van Limpt H, Beerkens R, Verheijen O (2006) J Am Ceramic Soc 89(11):3446CrossRefGoogle Scholar
  20. 20.
    Yu Y, Hewins RH, Alexander CMO’D, Wang J (2003) Geochim Cosmochim Acta 67(4):773CrossRefGoogle Scholar
  21. 21.
    Arkharov VI, Kozmanov Yu D (1957) Akad Nauk SSSR 2:131Google Scholar
  22. 22.
    Rosen C, Post B, Banks E (1956) Acta Cryst 9:477CrossRefGoogle Scholar
  23. 23.
    Wang J, Liu G, Du Y (2003) Mater Lett 57:3648–3652CrossRefGoogle Scholar
  24. 24.
    Blackburn PE, Hoch M, Johnston HL (1958) J Phys Chem 62(7):769CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • C. Dorgans
    • 1
    Email author
  • J.-M. Chaix
    • 1
  • L. Boulangé
    • 1
  • Y. Bréchet
    • 1
  1. 1.SIMaP, Grenoble INP-CNRS-UJFSaint Martin d’HèresFrance

Personalised recommendations