Journal of Materials Science

, Volume 45, Issue 3, pp 669–680 | Cite as

Effect of moisture on the bending properties of thermally modified beech and spruce

  • Martin ArnoldEmail author


For appropriate and successful applications of thermally modified wood, a detailed knowledge of its distinct properties is essential. A thermal modification leads to structural and chemical changes in the wood constituents, which may significantly alter the material properties as compared to untreated solid wood. As contribution to a comprehensive material characterisation, moisture–mechanical property relationships were studied for selected bending properties of untreated and thermally modified beech and spruce. Static bending tests were conducted on small clear specimens at three treatment and five moisture levels. Bending strength at standard (dry) climate conditions was reduced by the thermal modification, while stiffness tended to show some increase. Furthermore, both properties decreased with increasing moisture content in untreated as well as thermally modified wood. However, because of the lower moisture sensitivity of thermally modified wood, the moisture dependence of its bending properties was considerably reduced. Therefore, in moist environments, equal or even better stiffness and strength values may be expected for thermally modified wood as compared to untreated solid wood. On the other hand, the changed fracture behaviour of thermally modified wood related to its increased brittleness, which was present also in wet conditions, has to be taken into account for potential structural applications.


Moisture Content Treatment Level Moisture Level Wood Species Thermal Modification 



This article is based on data collected in the EU-projects ‘Nanowood’ (G1ST-CT-2002-50274) and ‘Holiwood’ (NMP2-CT-2005-011799), which were financially supported by the Swiss State Secretariat for Education and Research and the European Commission. The test material was provided by Mitteramskogler GmbH, Gaflenz, Austria. Specimen preparation and testing was carried out by A. Fischer, D. Heer and W. Risi (Empa, Wood Laboratory, Dübendorf, Switzerland).


  1. 1.
    Lohmann U (2003) Holz-Lexikon. DRW-Verlag, Leinfelden-EchterdingenGoogle Scholar
  2. 2.
    Hill CAS (2006) Wood modification—chemical, thermal and other processes. Wiley, ChichesterCrossRefGoogle Scholar
  3. 3.
    Fengel D, Wegener G (1984) Wood—chemistry, ultrastructure, reactions. De Gruyter, Berlin, New YorkGoogle Scholar
  4. 4.
    Esteves BM, Pereira HM (2009) Bioresources 4:370Google Scholar
  5. 5.
    Rowell RM, Ibach RE, McSweeny J, Nilsson T (2009) In: Proceedings of 4th European conference on wood modification, Stockholm, Sweden, p 489Google Scholar
  6. 6.
    Rapp AO (ed) (2001) Review on heat treatments of wood. BFH/European Commission, HamburgGoogle Scholar
  7. 7.
    Teischinger A, Stingl R (eds) (2002) Modifiziertes Holz: Eigenschaften und Märkte. Universität für Bodenkultur, WienGoogle Scholar
  8. 8.
    Hill CAS, Jones D, Militz H, Ormondroyd GA (eds) (2007) Proceedings of 3rd European conference on wood modification, Cardiff, UKGoogle Scholar
  9. 9.
    Kocaefe D, Chaudhry B, Poncsak S, Bouazara M, Pichette A (2007) J Mater Sci 42:854. doi: CrossRefGoogle Scholar
  10. 10.
    Englund F, Hill CAS, Militz H, Segerholm BK (eds) (2009) Proceedings of 4th European conference on wood modification, Stockholm, SwedenGoogle Scholar
  11. 11.
    Arnold M (2007) In: Proceedings of 3rd European conference on wood modification, Cardiff, UK, p 161Google Scholar
  12. 12.
    Arnold M (2009) In: Proceedings of 4th European conference on wood modification, Stockholm, Sweden, p 187Google Scholar
  13. 13.
    Kollmann F, Côté WA (1968) Principles of wood science and technology. vol I. Solid wood. Springer, BerlinCrossRefGoogle Scholar
  14. 14.
    Skaar C (1988) Wood–water relations. Springer, BerlinCrossRefGoogle Scholar
  15. 15.
    Forest Products Laboratory (1999) Wood handbook—wood as an engineering material. Gen Tech Rep FPL–GTR–113. U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, WICrossRefGoogle Scholar
  16. 16.
    Rowell RM (1996) In: Hon DNS (ed) Chemical modification of lignocellulosic materials. Dekker, New York, p 295Google Scholar
  17. 17.
    Wilson TRC (1932) Strength–moisture relations for wood. U.S. Department of Agriculture, Washington, DCGoogle Scholar
  18. 18.
    Gerhards CC (1982) Wood Fiber Sci 14:4Google Scholar
  19. 19.
    Kretschmann DE, Green DW (1996) Wood Fiber Sci 28:320Google Scholar
  20. 20.
    Dinwoodie JM (2000) Timber: its nature and behaviour. E & FN Spon, LondonCrossRefGoogle Scholar
  21. 21.
    Thelandersson S, Larsen HJ (eds) (2003) Timber engineering. Wiley, ChichesterGoogle Scholar
  22. 22.
    Rowell RM (2005) Handbook of wood chemistry and wood composites. Taylor & Francis, Boca RatonGoogle Scholar
  23. 23.
    Kollmann F, Schneider A (1963) Holz Roh Werkst 21:77CrossRefGoogle Scholar
  24. 24.
    Pétrissans M, Gérardin P, El bakali I, Serraj M (2003) Holzforschung 57:301CrossRefGoogle Scholar
  25. 25.
    Metsä-Kortelainen S, Antikainen T, Viitaniemi P (2006) Holz Roh Werkst 64:192CrossRefGoogle Scholar
  26. 26.
    Rusche H (1973) Holz Roh Werkst 31:273CrossRefGoogle Scholar
  27. 27.
    Kubojima Y, Okano T, Ohta M (2000) J Wood Sci 46:8CrossRefGoogle Scholar
  28. 28.
    Bengtsson C, Jermer J, Brem F (2002) In: Proceedings of International Research Group on Wood Preservation, IRG 33rd annual meeting, Cardiff, Wales, Doc. No. IRG/WP 02-40242Google Scholar
  29. 29.
    Leijten AJM (2004) HERON 49:349Google Scholar
  30. 30.
    Gonzàlez-Peña MM, Hale MDC (2007) In: Proceedings of international research group on wood preservation, IRG 38th annual meeting, Jackson Lake Lodge, Wyoming, USA, Doc. No. IRG/WP 07-40367Google Scholar
  31. 31.
    Schneider A (1971) Holz Roh Werkst 29:431CrossRefGoogle Scholar
  32. 32.
    Bekhta P, Niemz P (2003) Holzforschung 57:539CrossRefGoogle Scholar
  33. 33.
    Boonstra MJ, Van Acker J, Tjeerdsma BF, Kegel EV (2007) Ann For Sci 64:679CrossRefGoogle Scholar
  34. 34.
    Epmeier H, Johansson M, Kliger R, Westin M (2007) Holzforschung 61:34CrossRefGoogle Scholar
  35. 35.
    Pfriem A, Grothe T, Wagenführ A (2007) Holz Roh Werkst 65:321CrossRefGoogle Scholar
  36. 36.
    Borrega M, Kärenlampi PP (2008) Holz Roh Werkst 66:63CrossRefGoogle Scholar
  37. 37.
    Mitteramskogler GmbH home page (2009) Accessed 22 Jan 2009
  38. 38.
    DIN 52186 (1978) DIN Standard. Prüfung von Holz: Biegeversuch (Testing of wood: bending test)Google Scholar
  39. 39.
    DIN 52182 (1976) DIN Standard. Prüfung von Holz: Bestimmung der Rohdichte (Testing of wood: determination of density)Google Scholar
  40. 40.
    DIN 52183 (1972) DIN Standard. Prüfung von Holz: Bestimmung des Feuchtigkeitsgehaltes (Testing of wood: determination of moisture content)Google Scholar
  41. 41.
    Sell J, Zimmermann T (1998) Holz Roh Werkst 56:365CrossRefGoogle Scholar
  42. 42.
    Fahlén J, Salmén L (2002) Plant Biol 4:339CrossRefGoogle Scholar
  43. 43.
    Reiterer A, Sinn G (2002) Holzforschung 56:191CrossRefGoogle Scholar
  44. 44.
    Reiterer A, Tschegg S (2002) J Mater Sci 37:4487. doi: CrossRefGoogle Scholar
  45. 45.
    Green DW, Evans JW (2001) Evolution of standardized procedures for adjusting lumber properties for change in moisture content. Gen Tech Rep FPL–GTR-127. U.S. Dept. of Agriculture, Forest Service, Forest Products Laboratory, Madison, WICrossRefGoogle Scholar
  46. 46.
    Dinwoodie JM (1978) Phys Technol 9:185CrossRefGoogle Scholar
  47. 47.
    Winandy JE, Lebow PK (2001) Wood Fiber Sci 33:239Google Scholar
  48. 48.
    Bergander A, Salmén L (2002) J Mater Sci 37:151. doi: CrossRefGoogle Scholar
  49. 49.
    Salmén L, Burgert I (2009) Holzforschung 63:121CrossRefGoogle Scholar
  50. 50.
    Neagu RC, Gamstedt EK, Bardage SL, Lindström M (2006) Wood Mater Sci Eng 1:146CrossRefGoogle Scholar
  51. 51.
    Tjeerdsma BF, Militz H (2005) Holz Roh Werkst 63:102CrossRefGoogle Scholar
  52. 52.
    Placet V, Passard J, Perré P (2008) J Mater Sci 43:3210. doi: CrossRefGoogle Scholar
  53. 53.
    Salmén L, Possler H, Stevanic JS, Stanzl-Tschegg SE (2008) Holzforschung 62:676CrossRefGoogle Scholar
  54. 54.
    Windeisen E, Bächle H, Zimmer B, Wegener G (2009) Holzforschung 63. doi:
  55. 55.
    Kubojima Y, Okano T, Ohta M (1998) J Wood Sci 44:73CrossRefGoogle Scholar
  56. 56.
    Andersson S, Serimaa R, Vaananen T, Paakkari T, Jamsa S, Viitaniemi P (2005) Holzforschung 59:422CrossRefGoogle Scholar
  57. 57.
    Phuong LX, Shida S, Saito Y (2007) J Wood Sci 53:181CrossRefGoogle Scholar
  58. 58.
    Phuong LX, Takayama M, Shida S, Matsumoto Y, Aoyagi T (2007) Holzforschung 61:488CrossRefGoogle Scholar
  59. 59.
    Widmann R (2009) In: Proceedings of 4th European conference on wood modification, Stockholm, Sweden, p 379Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Empa, Swiss Federal Laboratories for Materials Testing and Research, Wood LaboratoryDübendorfSwitzerland

Personalised recommendations