Journal of Materials Science

, Volume 45, Issue 3, pp 641–651 | Cite as

Precipitation-hardening in cast AL–Si–Cu–Mg alloys

  • F. J. Tavitas-Medrano
  • A. M. A. Mohamed
  • J. E. Gruzleski
  • F. H. SamuelEmail author
  • H. W. Doty


Age-hardenable aluminum–silicon alloys have attracted increasing attention in recent years, particularly as a result of the demand for lighter vehicles as part of the overall goal to improve fuel efficiency and to reduce vehicle emissions. Among these aluminum cast alloys, the 319-type alloys have become the object of extensive investigation considering their practical importance to the transport industry. All the experimental variables, such as solidification condition, composition, and heat treatment, are known to have an influence on precipitation behavior; precipitation-hardening, however, is the most significant of these because of the presence of excess alloying elements from the supersaturated solid solution which form fine particles and consequently act as obstacles to dislocation movement. The precipitation-hardening behavior of a Sr-modified 319-type alloy containing 0.4% Mg was investigated for this study using transmission electron microscopy. Non-conventional aging cycles were applied so as to evaluate the degree of the improvement in strength potentially obtainable. The results show that the main strengthening phase is θ-Al2Cu occurring in the form of plates; other phases were observed as minor constituents in this alloy, including the binary β-Mg2Si, the ternary S-CuAlMg2, and the quaternary Q-Al5Cu2Mg7Si7.


Zone Axis Solution Heat Treatment TiAl3 Supersaturated Solid Solution Show Transmission Electron Microscope Image 



The authors would like to express their gratitude to the Natural Sciences and Engineering Research Council of Canada (NSERC), to General Motors Powertrain Group (USA), and to Corporativo Nemak (Mexico) for the financial support and in-kind help provided for carrying out this research. Help provided by Dr. Agnes M. Samuel in correcting the manuscript is greatly appreciated.


  1. 1.
    Kaufman JG (2000) Introduction to aluminum alloys and tempers. ASM International, Materials Park, p 108Google Scholar
  2. 2.
    Chang J, Moon I, Choi C (1998) J Mater Sci 33:5015. doi: CrossRefGoogle Scholar
  3. 3.
    Komiyama Y, Uchida K, Gunshi M (1976) J Jpn Inst Light Met 26:311CrossRefGoogle Scholar
  4. 4.
    Basavakumar KG, Mukuda PG, Chakraborty M (2007) J Mater Sci 42:8714. doi: CrossRefGoogle Scholar
  5. 5.
    Yu L, Liu X, Wang Z, Bian X (2005) J Mater Sci 40:3865. doi: CrossRefGoogle Scholar
  6. 6.
    Gruzleski JE, Closset B (1990) The treatment of liquid aluminum silicon alloys. American Foundrymen’s Society, Des Plaines, p 31Google Scholar
  7. 7.
    Samuel FH, Samuel AM, Liu L (1995) J Mater Sci 30:2531. doi: CrossRefGoogle Scholar
  8. 8.
    Tavitas-Medrano FJ, Gruzleski JE, Samuel FH, Valtierra S, Doty HW (2008) Mater Sci Eng A 480:356CrossRefGoogle Scholar
  9. 9.
    Kang HG, Kida M, Miyahara H, Ogi K (1999) AFS Trans 107:507Google Scholar
  10. 10.
    Weakley SC, Donlon W, Wolverton C, Jones JW, Allison JE (2004) Metall Mater Trans A 35A:2407CrossRefGoogle Scholar
  11. 11.
    Cáceres CH (2000) J Mater Eng Perform 9:215CrossRefGoogle Scholar
  12. 12.
    Ouellet P, Samuel FH (1999) J Mater Sci 34:4671. doi: CrossRefGoogle Scholar
  13. 13.
    Hatch JE (1984) Aluminum: properties and physical metallurgy. American Society for Metals, Materials Park, p 143Google Scholar
  14. 14.
    Abis S, Massazza M, Mengucci P, Riontino G (2001) Scripta Mater 45:685CrossRefGoogle Scholar
  15. 15.
    Mishra RK, Smith GW, Baxter WJ, Sachdev AK, Franetovic V (2001) J Mater Sci 36:461. doi: CrossRefGoogle Scholar
  16. 16.
    Barlow IC, Rainforth WM, Jones H (2000) J Mater Sci 35:1413. doi: CrossRefGoogle Scholar
  17. 17.
    Wang G, Sun Q, Feng L, Hui L, Jing C (2007) Mater Des 28:1001–1005CrossRefGoogle Scholar
  18. 18.
    Mishra RK, Sachdev AK, Baxter WJ (2004) AFS Trans 112:179Google Scholar
  19. 19.
    Chakrabarti DJ, Laughlin DE (2004) Prog Mater Sci 49:389CrossRefGoogle Scholar
  20. 20.
    Eskin DG (2003) J Mater Sci 38:279. doi: CrossRefGoogle Scholar
  21. 21.
    Shivkumar S, Ricci S, Apelian D (1990) AFS Trans 98:913Google Scholar
  22. 22.
    Hernandez-Paz JF, Paray F, Gruzleski JE, Emadi D (2004) AFS Trans 112:155Google Scholar
  23. 23.
    Zhang DL, Zheng L (1996) Metall Mater Trans A 27A:3983CrossRefGoogle Scholar
  24. 24.
    Wang QG, Davidson CJ (2001) J Mater Sci 36:739. doi: CrossRefGoogle Scholar
  25. 25.
    Lumley RN, Morton AJ, O’Donnell G, Polmear IJ (2004) Ind Heat 71:31Google Scholar
  26. 26.
    Lumley RN, Polmear IJ, Morton AJ (2002) Mater Sci Forum 396–402:893CrossRefGoogle Scholar
  27. 27.
    Lumley RN, Polmear IJ, Morton AJ (2003) Mater Sci Technol 19:1483CrossRefGoogle Scholar
  28. 28.
    Lumley RN, Polmear IJ, Morton AJ (2005) Mater Sci Technol 21:1025CrossRefGoogle Scholar
  29. 29.
    Kaufman JG, Rooy EL (2004) Aluminum alloy castings: properties, processes, and application. ASM International, Materials Park, p 13Google Scholar
  30. 30.
    Martin JW (1998) Precipitation hardening, 2nd edn. Butterworth-Heinemann, Oxford, p 79CrossRefGoogle Scholar
  31. 31.
    Gladman T (1999) Mater Sci Technol 15:30CrossRefGoogle Scholar
  32. 32.
    Ratchev P, Verlinden B, Van Houtte P (1994) Scripta Metall Mater 30:599CrossRefGoogle Scholar
  33. 33.
    Kido K, Matsuda K, Kawabata T, Sato T, Ikeno S (2002) Mater Sci Forum 396–402:953CrossRefGoogle Scholar
  34. 34.
    Murayama M, Hono K (1999) Acta Mater 47:1537CrossRefGoogle Scholar
  35. 35.
    Gupta AK, Lloyd DJ, Court SA (2001) Mater Sci Eng A316:11CrossRefGoogle Scholar
  36. 36.
    Esmaeili S, Wang X, Lloyd DJ, Poole WJ (2003) Metall Mater Trans 34A:751Google Scholar
  37. 37.
    Murayama M, Hono K, Saga M, Kikuchi M (1998) Mater Sci Eng A250:127CrossRefGoogle Scholar
  38. 38.
    Samuel FH (1998) J Mater Sci 33:2283. doi: CrossRefGoogle Scholar
  39. 39.
    Wang G, Bian X, Wang W, Zhang J (2003) Mater Lett 57:4083CrossRefGoogle Scholar
  40. 40.
    Li Z, Samuel AM, Samuel FH, Ravindran C, Valtierra S, Doty H (2003) AFS Trans 111:241Google Scholar
  41. 41.
    Ringer SP, Hono K, Polmear IJ, Sakurai T (1996) Appl Surf Sci 94:253CrossRefGoogle Scholar
  42. 42.
    Ringer SP, Hono K, Sakurai T, Polmear IJ (1997) Scripta Mater 36:517CrossRefGoogle Scholar
  43. 43.
    Polmear IJ (2001) Mater Sci Forum 363–365:1CrossRefGoogle Scholar
  44. 44.
    Porter DA, Easterling KE (1981) Phase transformations in metals and alloys, 1st edn. Van Nostrand Reinhold (UK) Co. Ltd, Wokingham, p 263Google Scholar
  45. 45.
    Cayron C, Buffat PA (2000) Acta Mater 48:2639CrossRefGoogle Scholar
  46. 46.
    Miao WF, Laughlin DE (2000) Metall Mater Trans 31A:361CrossRefGoogle Scholar
  47. 47.
    Ratchev P, Verlinden B, DeSmet P, Van Houtte P (1999) Mater Trans JIM 40:34CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • F. J. Tavitas-Medrano
    • 1
  • A. M. A. Mohamed
    • 2
    • 3
  • J. E. Gruzleski
    • 1
  • F. H. Samuel
    • 2
    Email author
  • H. W. Doty
    • 4
  1. 1.Department of Mining, Metals and Materials EngineeringMcGill UniversityMontrealCanada
  2. 2.Département des Sciences AppliquéesUniversité du Québec à ChicoutimiChicoutimiCanada
  3. 3.Department of Metallurgical and Materials Engineering, Faculty of Petroleum and Mining EngineeringSuez Canal UniversitySuezEgypt
  4. 4.GM Powertrain Group, Metal Casting Technology, Inc.MilfordUSA

Personalised recommendations