Skip to main content
Log in

Influence of annealing on the electrochemical behavior of finemet amorphous and nanocrystalline alloy

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The electrochemical corrosion behavior of finemet alloy at various heat treatment temperatures was investigated. Thermal behavior and structural changes were studied using differential scanning calorimetry and X-ray diffractometry, respectively. The electrochemical corrosion of amorphous and annealed samples was investigated in 0.10 M NaOH solution using electrochemical impedance spectroscopy and linear sweep voltammetery. Changes in morphology of the samples before and after corrosion were characterized using optical microscope. The results showed that structural relaxation and nanocrystallization during the heat treatment improved corrosion behavior of the alloy. The heat-treated alloy at 650 °C showed a corrosion rate of 1.37 × 10−8 A cm−2 and a positive shift of +417 mV in the corrosion potential compared to the amorphous alloy. Also, the heat-treated alloy at 650 °C showed a higher charge transfer resistance up to 50 kΩ due to corrosion resistance, compared with amorphous sample that showed a charge transfer resistance of 0.5 kΩ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cheng JB, Liang XB, Xu BS, Wu YX (2009) J Mater Sci 44:3356. doi:https://doi.org/10.1007/s10853-009-3436-5

    Article  CAS  Google Scholar 

  2. Fujii H, Yardley VA, Matsuzaki T, Tsurekawa S (2008) J Mater Sci 43:3837. doi:https://doi.org/10.1007/s10853-007-2220-7

    Article  CAS  Google Scholar 

  3. Zhang YR, Ramanujan RV (2006) J Mater Sci 41:5292. doi:https://doi.org/10.1007/s10853-006-0263-9

    Article  CAS  Google Scholar 

  4. Yoshizawa Y, Oguma S, Yamauchi K (1988) J Appl Phys 64:6044

    Article  CAS  Google Scholar 

  5. McHenry ME, Willard MA, Laughlin DE (1999) Prog Mater Sci 44:291

    Article  CAS  Google Scholar 

  6. Herzer G (1996) J Magn Magn Mater 157–158:133

    Article  Google Scholar 

  7. Herzer G (1997) Handbook of magnetic materials, vol 10. Elsevier, Amsterdam, pp 417–461

    Google Scholar 

  8. Souza CAC, Politi FS, May JE, Kuri SE, Kiminami CS (1999) J Non-Cryst Solids 247:69

    Article  CAS  Google Scholar 

  9. May JE, Souza CAC, Morelli CL, Mariano NA, Kuri SE (2005) J Alloys Compd 390:106

    Article  CAS  Google Scholar 

  10. Mariano NA, Souza CAC, May JE, Kuri SE (2003) Mater Sci Eng 354:1–5

    Article  Google Scholar 

  11. Petzold J (2002) J Magn Magn Mater 242–245:84

    Article  Google Scholar 

  12. Hasegawa R (2006) J Magn Magn Mater 304:187

    Article  CAS  Google Scholar 

  13. Altube A et al (2003) Corros Sci 45:685

    Article  CAS  Google Scholar 

  14. Vara G et al (2007) J Non-Cryst Solids 353:1008

    Article  CAS  Google Scholar 

  15. Marzo FF et al (2007) J Non-Cryst Solids 353:875

    Article  CAS  Google Scholar 

  16. Marzo FF et al (2002) Electrochim Acta 47:2265

    Article  CAS  Google Scholar 

  17. Altube A, Pierna AR (2004) Electrochim Acta 49:303

    Article  CAS  Google Scholar 

  18. Rammelt U, Reinhard G (1988) Electrochim Acta 35–6:L199

    Google Scholar 

  19. Park JR, Macdonald DD (1983) Corros Sci 23:295

    Article  CAS  Google Scholar 

  20. Garcia JA et al (2006) J Non-Cryst Solids 352:5118

    Article  CAS  Google Scholar 

  21. Fiorillo F (2004) Measurement and characterization of magnetic materials. Elsevier, Amsterdam, pp 51–60

    Google Scholar 

  22. Kaevitser EV (2004) Mater Sci Eng A 375–377:683

    Article  Google Scholar 

  23. Macdonald DD, Mckubre MCH (1982) Modern aspects of electrochemistry, vol 14. Plenum Press, New York, p 61

    Book  Google Scholar 

  24. Miguel C, Kaloshkin S, Gonzalez J, Zhukov A (2003) J Non-Cryst Solids 329:63

    Article  CAS  Google Scholar 

  25. Lovas A, Kiss LF, Balogh I (2000) J Magn Magn Mater 215–216:463

    Article  Google Scholar 

  26. Poole CP (2003) Introduction to nanotechnology. Wiley, Hoboken, NJ, p 147

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Nozad Golikand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shivaee, H.A., Golikand, A.N., Hosseini, H.R.M. et al. Influence of annealing on the electrochemical behavior of finemet amorphous and nanocrystalline alloy. J Mater Sci 45, 546–551 (2010). https://doi.org/10.1007/s10853-009-3972-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3972-z

Keywords

Navigation