Skip to main content
Log in

Mechanism of dispersing an active component into a polymeric carrier by the SEDS-PA process

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Supercritical fluid anti-solvent precipitation has been attracting widespread attention due to its distinctive advantages, and has exhibited a great perspective of application in the production of polymer-based composite micro- and nanoparticles. In this study, based on the experiment results of production of carotene-loaded polymer PEG or l-PLA composite microparticles using solution enhanced dispersion by supercritical fluids through prefilming atomization (SEDS-PA) process, the possible mechanism of dispersing an active component in a polymeric carrier by the SEDS-PA co-precipitation was deduced. The mechanism is mainly the formation and growth of the active component (carotene) nuclei in the polymer-rich phase induced by mass transfer and phase transition, and the polymer capture/encapsulation of active component particles generated in an expanded solution droplet caused by the collision among these particles and polymer-rich phase. There are four factors that could influence the sizes and morphologies of the SEDS-PA precipitates. They are, respectively, atomization of solution, prompt and persistent super-saturation of the expanded droplets, breakup of the expanded droplets with interstices and the particle agglomeration caused by collision in the SEDS-PA process. The integrated effect of these factors dominates the sizes and morphologies of the SEDS precipitates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Langer R (1990) Science 249:1527

    Article  CAS  Google Scholar 

  2. Elvassore N, Bertucco A, Caliceti P (2001) Ind Eng Chem Res 40:795

    Article  CAS  Google Scholar 

  3. Reverchon E, Della Porta G (2003) Chem Eng Technol 26:840

    Article  CAS  Google Scholar 

  4. Debenedetti P, Tom JW, Yeo SD, Lim GB (1993) J Control Release 24:27

    Article  CAS  Google Scholar 

  5. Mishima K, Matsuyama K, Tanabe D, Yamauchi S (2000) AIChE J 46:857

    Article  CAS  Google Scholar 

  6. Matsuyama K, Mishima K, Hayashi KI, Ishikawa H, Matsuyama H, Harada T (2003) J Appl Polym Sci 89:742

    Article  CAS  Google Scholar 

  7. Pasquali I, Bettini R (2008) Int J Pharm 364:176

    Article  CAS  Google Scholar 

  8. Benedetti L, Bertucco A, Pallado P (1997) Biotechnol Bioeng 53:232

    Article  CAS  Google Scholar 

  9. Yeo SD, Kim MS, Lee JC (2003) J Supercrit Fluids 25:143

    Article  CAS  Google Scholar 

  10. Heater KJ, Tomasko DL (1998) J Supercrit Fluids 14:55

    Article  CAS  Google Scholar 

  11. Liu ZM, Wang JQ, Song LP, Yang GY, Han BX (2002) J Supercrit Fluids 24(1):1

    Article  Google Scholar 

  12. Reverchon E, Marco IDE, Caputo G, Della Porta G (2003) J Supercrit Fluids 26:1

    Article  CAS  Google Scholar 

  13. Reverchon E, De Marco I, Della Porta G (2002) J Supercrit Fluids 23:81

    Article  CAS  Google Scholar 

  14. Sarkari M, Darrat I, Knutson BL (2000) AIChE J 46:1850

    Article  CAS  Google Scholar 

  15. Luna-Barcenas G, Kanakia SK, Sanchez IC, Johnston KP (1995) Polymer 36:3173

    Article  CAS  Google Scholar 

  16. Bodemeier R, Wang WH, Dixon DJ, Mawson S, Johnston KP (1995) Pharm Res 12:1211

    Article  Google Scholar 

  17. Bleich J, Müller BW, Wabmus W (1993) Int J Pharm 97:111

    Article  CAS  Google Scholar 

  18. Mawson S, Kanakia S, Johnston KP (1997) J Appl Polym Sci 64:2105

    Article  CAS  Google Scholar 

  19. Jarmer DJ, Lengsfeld CS, Randolph TW (2003) J Supercrit Fluids 27:317

    Article  CAS  Google Scholar 

  20. Ghaderi R, Artursson P, Carlfors J (1999) Pharm Res 16:676

    Article  CAS  Google Scholar 

  21. York P (1995) Pharm Res 12:S141

    Google Scholar 

  22. Palakodaty S, York P, Pritchard J (1998) Pharm Res 15:1835

    Article  CAS  Google Scholar 

  23. Chang SC, Lee MJ, Lin HM (2008) Chem Eng J 139:416

    Article  CAS  Google Scholar 

  24. Juppo AM, Boissier C, Khoo C (2003) Int J Pharm 250:385

    Article  CAS  Google Scholar 

  25. Ghaderi R, Artursson P, Carlfors J (2000) Eur J Pharm Sci 10:1

    Article  CAS  Google Scholar 

  26. Elvassore N, Bertucco A, Caliceti P (2001) J Pharm Sci 90(10):1628

    Article  CAS  Google Scholar 

  27. Tservistas M, Levy MS, Lo-Yim MYA, O’Kennedy RD, York P, Humphrey GO, Hoare M (2001) Biotechnol Bioeng 72(1):12

    Article  CAS  Google Scholar 

  28. Chen AZ, Kang YQ, Pu XM, Yin GF, Li Y, Hu JY (2009) J Colloid Interf Sci 330:317

    Article  CAS  Google Scholar 

  29. Wang Y, Dave RN, Pfeffer R (2004) J Supercrit Fluids 28:85

    Article  CAS  Google Scholar 

  30. He WZ, Suo QL, Jiang ZH, A S, Hong HL (2004) J Supercrit Fluids 31(1):101

    Article  CAS  Google Scholar 

  31. Suo QL, He WZ, Huang YC, Li CP, Hong HL, Li YX, Zhu MD (2005) Powder Technol 154:110

    Article  CAS  Google Scholar 

  32. He WZ, Suo QL, Li YX, Hong HL, Li GM, Zhao XH, Huang YC (2007) Cryst Res Technol 42(6):631

    Article  CAS  Google Scholar 

  33. He WZ, Suo QL, Hong HL, Li GM, Zhao XH, LI CP, A S (2006) Ind Eng Chem Res 45:2108

    Article  CAS  Google Scholar 

  34. He WZ, Suo QL, Hong HL, A S, Li CP, Huang YC, Li YX, Zhu MD (2007) J Mater Sci 42:3495. doi:https://doi.org/10.1007/s10853-006-1099-z

    Article  CAS  Google Scholar 

  35. Lengsfeld CS, Delplangue JP, Barocas VH, Randolph TW (2000) J Phys Chem 104:2725

    Article  CAS  Google Scholar 

  36. Bristow S, Shekunov T, Shekunov BY, York P (2001) J Supercrit Fluids 21:257

    Article  CAS  Google Scholar 

  37. Sun Y, Shekunov BY (2003) J Supercrit Fluids 27:73

    Article  CAS  Google Scholar 

  38. Randolph TW, Randolph AJ, Mebes M, Young S (1993) Biotechnol Progress 9:429

    Article  CAS  Google Scholar 

  39. Reverchon E (1999) J Supercrit Fluids 15:1

    Article  CAS  Google Scholar 

  40. Dixon DJ, Johnston KP, Bodmeier RA (1993) AIChE J 39:127

    Article  CAS  Google Scholar 

  41. Liau IS, Mc Hugh MA (1985) Supercritical fluid technology. Elsevier Science Publishers, Amsterdam

    Google Scholar 

  42. Wissinger RG, Paulaitis ME (1987) J Polym Sci B Polym Phys 25:2497

    Article  CAS  Google Scholar 

  43. Gulari E, Manke CW (2000) In: Proceedings of the 5th international symposium on supercritical fluids, Atlanta (USA), April 8–12

Download references

Acknowledgements

The authors gratefully acknowledge the financial supports of the national natural science foundation of China (Grant No. 20266004) of 863 project of China (Grant No. 2003AA2Z3533) and of natural science foundation of Inner Mongolia (China) (Grant No. 200308020203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenzhi He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, W., Jiang, Z., Suo, Q. et al. Mechanism of dispersing an active component into a polymeric carrier by the SEDS-PA process. J Mater Sci 45, 467–474 (2010). https://doi.org/10.1007/s10853-009-3963-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3963-0

Keywords

Navigation