Journal of Materials Science

, Volume 45, Issue 2, pp 392–398 | Cite as

Microstructure and mechanical properties of SiCP/SiC and SiCW/SiC composites by CVI

  • Yunfeng HuaEmail author
  • Litong Zhang
  • Laifei Cheng
  • Zhengxian Li
  • Jihong Du


37.2 vol.% SiCP/SiC and 25.0 vol.% SiCW/SiC composites were prepared by chemical vapor infiltration (CVI) process through depositing SiC matrix in the porous particulate and whisker preforms, respectively. The particulate (or whisker) preforms has two types of pores; one is small pores of several micrometers at inter-particulates (or whiskers) and the other one is large pores of hundreds micrometers at inter-agglomerates. The microstructure and mechanical properties of 37.2 vol.% SiCP/SiC and 25.0 vol.% SiCW/SiC composites were studied. 37.2 vol.% SiCP/SiC (or 25.0 vol.% SiCW/SiC) consisted of the particulate (or whisker) reinforced SiC agglomerates, SiC matrix phase located inter-agglomerates and two types of pores located inter-particulates (or whiskers) and inter-agglomerates. The density, fracture toughness evaluated by SENB method, and flexural strength of 37.2 vol.% SiCP/SiC and 25.0 vol.% SiCW/SiC composites were 2.94 and 2.88 g/cm3, 6.18 and 8.34 MPa m1/2, and 373 and 425 MPa, respectively. The main toughening mechanism was crack deflection and bridging.


Fracture Toughness Flexural Strength Crack Deflection Chemical Vapor Infiltration Critical Aspect Ratio 



The authors acknowledge the support of this work by the Natural Science Foundation of China under Grant No. 90405015.


  1. 1.
    Lee SK, Kim DY (2002) J Mater Sci Lett 21:1343CrossRefGoogle Scholar
  2. 2.
    Kim YW, Kim JY, Rhee SH, Kim DY (2000) J Eur Ceram Soc 20:945CrossRefGoogle Scholar
  3. 3.
    Cho KS, Choi HJ, Lee JG, Kim YW (1998) Ceram Int 24:299CrossRefGoogle Scholar
  4. 4.
    Padure P (1994) J Am Ceram Soc 77(2):519CrossRefGoogle Scholar
  5. 5.
    Tani T (1999) Composites Part A 30:419CrossRefGoogle Scholar
  6. 6.
    Strecker K, Hoffmann MJ (2005) J Eur Ceram Soc 25:801CrossRefGoogle Scholar
  7. 7.
    Dong SM, Jiang DL, Tan SH, Guo JK (1995) Ceram Int 21:451CrossRefGoogle Scholar
  8. 8.
    Pan YB, Qiu JH, Kawagoe M, Morita M, Tan SH, Jiang DL (1999) J Eur Ceram Soc 19:1789CrossRefGoogle Scholar
  9. 9.
    Mahfuz H, Zadoo DP, Wilks F, Maniruzzaman Md, Jeelani S (1995) J Mater Sci 30:2406. doi: CrossRefGoogle Scholar
  10. 10.
    Hirota K, Hara H, Kato M (2007) Mater Sci Eng A 458:216CrossRefGoogle Scholar
  11. 11.
    Morisada Y, Miyamoto Y, Takaura Y, Hirota K, Tamari N (2007) Int J Refract Met Hard Mater 25:322CrossRefGoogle Scholar
  12. 12.
    Faber KT, Evens AG (1983) Acta Metall 31(4):565CrossRefGoogle Scholar
  13. 13.
    Faber KT, Evens AG (1983) Acta Metall 31(4):577CrossRefGoogle Scholar
  14. 14.
    Becher PF, Hsueh CH, Angelini P, Tiegs TN (1988) J Am Ceram Soc 71(12):1050CrossRefGoogle Scholar
  15. 15.
    Paik U, Park HC, Choi SC, Ha CG, Kim JW, Jung YG (2002) Mater Sci Eng A 34:267CrossRefGoogle Scholar
  16. 16.
    Magnani G, Beltrami G, Minoccari GL, Pilotti LJ (2001) J Eur Ceram Soc 21(5):633CrossRefGoogle Scholar
  17. 17.
    Lillo TM, Bailey DW, Laughton DA, Chu HS, Harrison WM (2003) Ceram Eng Sci Proc 24(3):359CrossRefGoogle Scholar
  18. 18.
    Taguchi SP, Ribeiro S, Balestra RM, Rodrigues D Jr (2007) Mater Sci Eng A 454–455:24CrossRefGoogle Scholar
  19. 19.
    Naslain R (2004) Compos Sci Technol 64(2):155CrossRefGoogle Scholar
  20. 20.
    Besmann TM, Lowden RA, Stinton DP (1993) In: Naslain R, Lamon J, Doumeingts D (eds) High temperature ceramic matrix composites. Woodhead Publishing Ltd, Cambridge, p 215Google Scholar
  21. 21.
    Lackey J, Hanigofsky JA, Freeman GB, Hardin RD, Prasad A (1995) J Am Ceram Soc 78(6):1564CrossRefGoogle Scholar
  22. 22.
    Xu YD, Zhang LT (1997) J Am Ceram Soc 80(6):1897Google Scholar
  23. 23.
    Hua YF, Zhang LT, Cheng LF, Li ZX, Du JH (2009) Comput Mater Sci 46:133CrossRefGoogle Scholar
  24. 24.
    She JH, Jiang DL, Tan SH, Guo JK (1995) Key Eng Mater 108–110:45CrossRefGoogle Scholar
  25. 25.
    Hua YF, Zhang LT, Cheng LF, Wang J (2006) Mater Sci Eng A 428:346CrossRefGoogle Scholar
  26. 26.
    Li HB, Zhang LT, Cheng LF, Wang YG, Yu ZY, Huang MH, Tu HB, Xia HP (2008) J Mater Sci 43:2806. doi: CrossRefGoogle Scholar
  27. 27.
    Kodama H, Miyoshi T (1992) J Am Ceram Soc 75(6):1558CrossRefGoogle Scholar
  28. 28.
    Tanaka I, Pezzotti G, Miyamoto Y, Okamoto T (1991) J Mater Sci 26:208. doi: CrossRefGoogle Scholar
  29. 29.
    Ueno K, Kose S, Kinoshita M (1993) J Mater Sci 28:5770. doi: CrossRefGoogle Scholar
  30. 30.
    Yanai T, Ishizaki K (1996) Mater Trans JIM 37(12):1802CrossRefGoogle Scholar
  31. 31.
    Kim YW (2001) J Am Ceram Soc 84(9):2060CrossRefGoogle Scholar
  32. 32.
    Zhu SM, Fahrenholtz WG, Hilmas GE (2007) J Eur Ceram Soc 27:2077CrossRefGoogle Scholar
  33. 33.
    Baldacim SA, Santos C, Silva OMM, Silva CRM (2003) Int J Refract Metals Hard Mater 21:233CrossRefGoogle Scholar
  34. 34.
    Dong SM, Jiang DL, Tan SH, Guo JK (1999) J Inorg Mater 14(1):61Google Scholar
  35. 35.
    Baldacim SA, Cairo CAA, Silva CRM (2001) J Mater Process Technol 119:273CrossRefGoogle Scholar
  36. 36.
    Goto Y, Tsuge A (1993) J Am Ceram Soc 76(6):1420CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Yunfeng Hua
    • 1
    • 2
    Email author
  • Litong Zhang
    • 1
  • Laifei Cheng
    • 1
  • Zhengxian Li
    • 2
  • Jihong Du
    • 2
  1. 1.National Key Laboratory of Thermostructure Composite MaterialsNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China
  2. 2.Northwest Institute for Nonferrous Metal ResearchXi’anPeople’s Republic of China

Personalised recommendations