Journal of Materials Science

, Volume 45, Issue 2, pp 377–381 | Cite as

Characterization of Li2S–P2S5–Cu composite electrode for all-solid-state lithium secondary batteries

  • Akitoshi HayashiEmail author
  • Ryoji Ohtsubo
  • Motohiro Nagao
  • Masahiro Tatsumisago


Electrochemical performance of the Li2S–P2S5–Cu composite materials was examined in all-solid-state lithium secondary batteries. The 80Li2S·20P2S5 (mol.%) solid electrolyte with the addition of Cu was partially used as an active material with lithium source in all-solid-state cells. The initial discharge capacity of 110 mAh g−1 (normalized by the weight of 80Li2S·20P2S5–Cu), which corresponds to 400 mAh g−1 (normalized by the weight of Li2S), was obtained in the cell using the 80Li2S·20P2S5–Cu composite electrode with the molar ratio of Li2S/Cu = 48/52. Cycling performance and reaction mechanism of the electrode in the solid-state cell were investigated.


Active Material Solid Electrolyte Composite Electrode Copper Sulfide Initial Discharge Capacity 



This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan, and also supported by the New Energy and Industrial Technology Development Organization (NEDO) of Japan.


  1. 1.
    Hayashi A, Hama S, Minami T, Tatsumisago M (2003) Electrochem Commun 5:111CrossRefGoogle Scholar
  2. 2.
    Hayashi A, Hama S, Mizuno F, Tadanaga K, Minami T, Tatsumisago M (2004) Solid State Ion 175:683CrossRefGoogle Scholar
  3. 3.
    Minami T, Hayashi A, Tatsumisago M (2006) Solid State Ion 177:2715CrossRefGoogle Scholar
  4. 4.
    Yamin H, Gorenshtein A, Penciner J, Sternberg Y, Peled E (1988) J Electrochem Soc 135:1045CrossRefGoogle Scholar
  5. 5.
    Marmorstein D, Yu TH, Striebel KA, McLarnon FR, Hou J, Cairns EJ (2000) J Power Sources 89:219CrossRefGoogle Scholar
  6. 6.
    Akridge JR, Mikhaylik YV, White N (2004) Solid State Ion 175:243CrossRefGoogle Scholar
  7. 7.
    Ryu HS, Ahn HJ, Kim KW, Ahn JH, Lee JY (2006) J Power Sources 153:360CrossRefGoogle Scholar
  8. 8.
    He X, Pu W, Ren J, Wang L, Wang J, Jiang C, Wan C (2007) Electrochim Acta 52:7372CrossRefGoogle Scholar
  9. 9.
    Machida N, Kobayashi K, Nishikawa Y, Shigematsu T (2004) Solid State Ion 175:247CrossRefGoogle Scholar
  10. 10.
    Hayashi A, Ohtomo T, Mizuno F, Tadanaga K, Tatsumisago M (2004) Electrochim Acta 50:893CrossRefGoogle Scholar
  11. 11.
    Hayashi A, Ohtsubo R, Ohtomo T, Mizuno F, Tatsumisago M (2008) J Power Sources 183:422CrossRefGoogle Scholar
  12. 12.
    Mizuno F, Hayashi A, Tadanaga K, Tatsumisago M (2006) Solid State Ion 177:2731CrossRefGoogle Scholar
  13. 13.
    Chung JS, Sohn HJ (2002) J Power Sources 108:226CrossRefGoogle Scholar
  14. 14.
    Tachez M, Malugani JP, Mercier R, Robert G (1984) Solid State Ion 14:181CrossRefGoogle Scholar
  15. 15.
    Minceva-Sukarova B, Najdoski M, Grozdanov I, Chunnilall CJ (1997) J Mol Struct 410–411:267Google Scholar
  16. 16.
    Liu Y, Cao J, Wang Y, Zeng J, Qian Y (2002) Inorg Chem Commun 5:407CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Akitoshi Hayashi
    • 1
    Email author
  • Ryoji Ohtsubo
    • 1
  • Motohiro Nagao
    • 1
  • Masahiro Tatsumisago
    • 1
  1. 1.Department of Applied Chemistry, Graduate School of EngineeringOsaka Prefecture UniversitySakaiJapan

Personalised recommendations