Journal of Materials Science

, Volume 45, Issue 2, pp 369–376 | Cite as

New insights into anatase crystallization behavior in ionothermal synthesis of nanostructured TiO2

  • Yen Hui Liu
  • Min Chao ChangEmail author
  • Hsin Shao
  • Meng-Shun Huang
  • Arnold Chang-Mou Yang


The anatase crystallization behaviors in ionothermal synthesis (sol–gel method containing ionic liquid) of nanostructured TiO2 were studied in this paper. It was found that the specific physical chemical characteristics of the water/ionic liquid mixture caused the formation path and crystallinity of anatase TiO2 to depend on the H2O/titanium dioxide precursor (titanium tetraisopropoxide, TIP) molar ratio. Hydroxylated titanium compound was a key intermediate for forming anatase TiO2. It could be directly formed from hydrolysis of titanium dioxide precursor or ionic liquid-induced water dissolution of the condensation product. X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA) data indicated that a higher hydroxyl group ratio content of hydroxylated titanium compound was obtained at medium H2O/TIP molar ratio and from the system containing hydrophilic ionic liquid, such as 1-butyl-3-methylimidazolium tetrafluoroborate ([BuMIm]+[BF4]). The self organization ability of ionic liquid drove anatase crystallization through dehydration of the Ti–OH group of hydroxylated titanium compound in the thermal annealing process. As for the particle size of TiO2, TEM results indicated smaller particle size of TiO2 was obtained at medium H2O/TIP molar ratio case.


TiO2 Ionic Liquid Anatase TiO2 TiO2 Sample Nanostructured TiO2 


  1. 1.
    Wen T, Gao J, Shen J, Zhou Z (2001) J Mater Sci 36:5923. doi: CrossRefGoogle Scholar
  2. 2.
    Yoshimura M, Byrappa K (2008) J Mater Sci 43:2085. doi: CrossRefGoogle Scholar
  3. 3.
    Burnside SD, Shklover V, Barbě C, Comte P, Arendse F, Brooks K, Grãtzel M (1998) Chem Mater 10:2419CrossRefGoogle Scholar
  4. 4.
    Zhou Y (2005) Curr Nanosci 1:35CrossRefGoogle Scholar
  5. 5.
    Zhou Y, Antonietti M (2003) J Am Chem Soc 125:14960CrossRefGoogle Scholar
  6. 6.
    Nakashima T, Kimizuka N (2003) J Am Chem Soc 125:6386CrossRefGoogle Scholar
  7. 7.
    Yoo Ks, Choi H, Dionysiou DD (2004) Chem Commun 17:2000CrossRefGoogle Scholar
  8. 8.
    Yoo KS, Choi H, Dionysiou DD (2005) Catal Commun 6:259CrossRefGoogle Scholar
  9. 9.
    Choi H, Kim JY, Varma RS, Dionysios DD (2006) Chem Mater 18:5377CrossRefGoogle Scholar
  10. 10.
    Liu Y, Li J, Wang M, Li Z, Liu H, He P, Yang X, Li J (2005) Cryst Growth Des 5:1643CrossRefGoogle Scholar
  11. 11.
    Liu W, Zhao T, Zhang Y, Wang H, Yu M (2006) J Solution Chem 35:1337CrossRefGoogle Scholar
  12. 12.
    Zhu X, Wang Y, Li H (2009) AIChE J 55:198CrossRefGoogle Scholar
  13. 13.
    Livage J, Henry M, Sanchez C (1988) Prog Solid State Chem 18:259CrossRefGoogle Scholar
  14. 14.
    Liu YH, Lin CW, Chang MC, Shao H, Yang ACM (2008) J Mater Sci 43:5005. doi: CrossRefGoogle Scholar
  15. 15.
    Bessekhouad Y, Robert D, Weber JV (2003) J Photochem Photobiol A 157:47CrossRefGoogle Scholar
  16. 16.
    Cooper ER, Andrews CD, Wheatley WPS, Wormald PBP, Morris RE (2004) Nature 430:101CrossRefGoogle Scholar
  17. 17.
    Yu J, Wang G, Chemg B, Zhou M (2007) Appl Catal B Environ 69:171CrossRefGoogle Scholar
  18. 18.
    Pouilleau J, Devilliers D, Groult H (1997) J Mater Res 32:5645Google Scholar
  19. 19.
    Music S, Gotic M, Ivanda M, Popovic S, Turkovic A, Trojko R, Sekulic A, Furic K (1997) Mater Sci Eng B 47:33CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Yen Hui Liu
    • 1
  • Min Chao Chang
    • 2
    Email author
  • Hsin Shao
    • 2
  • Meng-Shun Huang
    • 2
  • Arnold Chang-Mou Yang
    • 1
  1. 1.Department of Materials Science and EngineeringNational Tsing Hua UniversityHsinchuTaiwan
  2. 2.EEL, Industrial Technology Research InstituteHsinchuTaiwan

Personalised recommendations