Journal of Materials Science

, Volume 45, Issue 2, pp 348–353 | Cite as

Shape controllable preparation and characterization of hierarchical PbS submicron cubes via a solvothermal method

  • Fei LiEmail author
  • Qinghua Qin
  • Jianfang Wu
  • Zhen Li


The controlled synthesis of PbS nanostructures with crystal morphology of hierarchical submicron cubes has been realized by chemical synthesis between lead acetate trihydrate and sulfur via a solvothermal route. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy were used to characterize the products. It was shown that well-dispersed and hierarchical PbS submicron cubes were formed at low temperature. Experiments demonstrated that the morphologies of PbS crystals were significantly influenced by treatment temperature, reaction time, and sulfur sources. A growth model was proposed for the selective formation of hierarchical PbS submicron cubes. Our work demonstrated the growth of hierarchical PbS architectures through a one-step, surfactant-free and solution-phase chemical route under controlled conditions.


Thiourea Select Area Electron Diffraction Pattern Na2S Sulfur Source Hierarchical Architecture 

Supplementary material

10853_2009_3942_MOESM1_ESM.doc (8.5 mb)
Supplementary material 1 (DOC 8717 kb)


  1. 1.
    Zhang DE, Zhang XJ, Ni XM, Song JM, Zheng HG (2006) Chem Phys Lett 430:326CrossRefGoogle Scholar
  2. 2.
    Jung A, Natter H, Hempelmann R, Lach E (2009) J Mater Sci 44:2725. doi: CrossRefGoogle Scholar
  3. 3.
    Du WM, Zhu J, Li SX, Qian XF (2008) Cryst Growth Des 8:2130CrossRefGoogle Scholar
  4. 4.
    Park K, Yu HJ, Chung WK, Kim B, Kim SH (2009) J Mater Sci 44:4315. doi: CrossRefGoogle Scholar
  5. 5.
    Zhai TY, Dong Y, Wang YB, Cao ZW, Ma Y, Fu HB, Yao JN (2008) J Solid State Chem 181:950CrossRefGoogle Scholar
  6. 6.
    Thongtem T, Phuruangrat A, Thongtem S (2008) J Phys Chem Solids 69:1346CrossRefGoogle Scholar
  7. 7.
    Machol JL, Wise FW, Patel RC, Tanner DB (1993) Phys Rev B 48:2819CrossRefGoogle Scholar
  8. 8.
    Mcdonald SA, Konstantatos G, Zhang GS, Cyr PW, Klem EJD, Levina L, Sargent EH (2005) Nat Mater 4:138CrossRefGoogle Scholar
  9. 9.
    Ellingson RJ, Beard MC, Johnson JC, Yu P, Micic OI, Nozik AJ, Shabaev A, Efros AL (2005) Nano Lett 5:865CrossRefGoogle Scholar
  10. 10.
    Plass R, Pelet S, Krueger J, Grätzel M, Bach U (2002) J Phys Chem B 106:7578CrossRefGoogle Scholar
  11. 11.
    Bakueva L, Musikhin S, Hines MA, Chang TWF, Tzolov M, Scholes GD, Sargent EH (2003) Appl Phys Lett 82:2895CrossRefGoogle Scholar
  12. 12.
    Dantas NO, Qu F, Silva RS, Morais PC (2002) J Phys Chem B 106:7453CrossRefGoogle Scholar
  13. 13.
    Levina L, Sukhovatkin V, Muskhin S, Cauchi S, Nisman R, Jones DPB, Sargent EH (2005) Adv Mater 17:1854CrossRefGoogle Scholar
  14. 14.
    Choudhury KR, Sahao Y, Jang S, Prasad PN (2005) Adv Funct Mater 15:751CrossRefGoogle Scholar
  15. 15.
    Asunskis DJ, Bolotin IL, Hanley L (2008) J Phys Chem C 112:9555CrossRefGoogle Scholar
  16. 16.
    Zhang C, Kang ZH, Shen EH, Wang EB, Gao L, Luo F, Tian CG, Wang CL, Lan Y, Li JX, Cao XJ (2006) J Phys Chem B 110:184CrossRefGoogle Scholar
  17. 17.
    Wang S, Gu F, Lü MK (2006) Langmuir 22:398CrossRefGoogle Scholar
  18. 18.
    Xiang JH, Cao HQ, Wu QZ, Zhang SC, Zhang XR (2008) Cryst Growth Des 8:3935CrossRefGoogle Scholar
  19. 19.
    Wu C, Shi JB, Chen CJ, Lin JY (2006) Mater Lett 60:3618CrossRefGoogle Scholar
  20. 20.
    Zuo F, Yan S, Zhang B, Zhao Y, Xie Y (2008) J Phys Chem C 112:2831CrossRefGoogle Scholar
  21. 21.
    Zhu JP, Duan WS, Sheng YP (2009) J Cryst Growth 311:355CrossRefGoogle Scholar
  22. 22.
    Hou YL, Kondoh H, Ohta T (2009) Cryst Growth Des 9:3119CrossRefGoogle Scholar
  23. 23.
    Román-Zamorano JF, Flores-Acosta M, Arizpe-Chávez H, Castillón-Barraza FF, Farías MH, Ramírez-Bon R (2009) J Mater Sci 44(18):4781. doi: CrossRefGoogle Scholar
  24. 24.
    Qiao ZP, Zhang Y, Zhou LT, Xire QC (2007) Cryst Growth Des 7:2394CrossRefGoogle Scholar
  25. 25.
    Bashouti M, Lifshitz E (2008) Inorg Chem 47:678CrossRefGoogle Scholar
  26. 26.
    Wang QQ, Xu G, Han GR (2005) J Solid State Chem 178:2680CrossRefGoogle Scholar
  27. 27.
    Wang ZL (1998) Adv Mater 10:13CrossRefGoogle Scholar
  28. 28.
    Wang WX, Li Q, Li M, Lin H, Hong LJ (2007) J Cryst Growth 299:17CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Faculty of Materials Science and Chemical EngineeringChina University of GeosciencesWuhanPeople’s Republic of China
  2. 2.Engineering Research Center of Nano-Geomaterials of Ministry of EducationChina University of GeosciencesWuhanPeople’s Republic of China

Personalised recommendations