Journal of Materials Science

, Volume 45, Issue 3, pp 624–632 | Cite as

Degradation behaviour and mechanical properties of magnesium implants in rabbit tibiae

  • Annett Krause
  • Nina von der HöhEmail author
  • Dirk Bormann
  • Christian Krause
  • Friedrich-Willhelm Bach
  • Henning Windhagen
  • Andrea Meyer-Lindenberg


To investigate the initial mechanical strength and the degradation behaviour with the associated changes in mechanical properties of magnesium-based osteosynthesis implants, 30 rabbits were implanted with cylindrical pins of the alloys MgCa0.8 (magnesium with 0.8 wt% calcium), LAE442 (magnesium with 4 wt% lithium, 4 wt% aluminium and 2 wt% rare earths) and WE43 (magnesium with 4 wt% yttrium and 3 wt% rare earths). The implants were inserted into the medullary cavity of both tibiae. After 3 and 6 months, each half of the animals was euthanized, respectively, and the implants were taken out. A determination of volume, three-point bending tests, scanning electron microscopy (SEM) and energy dispersive X-ray analyses as well as metallographic and μ-computed tomography examinations were accomplished. All implants were clinically well tolerated. MgCa-implants showed the least initial strength and the highest loss in volume after 6 months. SEM- and μ-computed tomography examinations revealed a pronounced pitting corrosion. Therefore, their use as degradable implant material seems to be limited. LAE442 has the best initial strength which seems to be sufficient for an application in weight-bearing bones. The degradation behaviour is very constant. However, possible unknown side effects of the rare earths have to be excluded in further investigations on biocompatibility. Considering all results of WE43, its application as osteosynthesis material for fracture repair is ineligible due to its heterogeneous and unpredictable degradation behaviour.


Magnesium Alloy Fracture Criterion Degradation Behaviour Amorphous Calcium Phosphate Initial Strength 



This study is part of the collaborative research centre (SFB599, Medical University of Hannover, University of Veterinary Medicine Hannover and University of Hannover), which is sponsored by the German Research Foundation (DFG).


  1. 1.
    Hofmann GO (1995) Arch Orthop Trauma Surg 114:123CrossRefGoogle Scholar
  2. 2.
    Meyer-Lindenberg A, Pruss M, Fehr M, Brunnberg L (1996) Prakt Tierarzt 77:987Google Scholar
  3. 3.
    Rehm KE, Helling HJ, Gatzka C (1997) Orthopade 26:489Google Scholar
  4. 4.
    Moses PA, Lewis DD, Lanz OI, Stubbs WP, Cross AR, Smith KR (2002) Aust Vet J 80:336CrossRefGoogle Scholar
  5. 5.
    Syrcle JA, Cook JL (2004) Vet Comp Orthop Traumatol 17:121CrossRefGoogle Scholar
  6. 6.
    Long M, Rack HJ (1998) Biomaterials 19:1621CrossRefGoogle Scholar
  7. 7.
    Disegi JA, Eschbach L (2000) Injury 31(Suppl 4):2CrossRefGoogle Scholar
  8. 8.
    Wintermantel E, Ha S (1998) Biokompatible Werkstoffe und Bauweisen. Springer, BerlinCrossRefGoogle Scholar
  9. 9.
    Raiha JE (1992) Clin Mater 10:35CrossRefGoogle Scholar
  10. 10.
    Kannan MB, Raman RK (2008) Biomaterials 29:2306CrossRefGoogle Scholar
  11. 11.
    Aluminium-Zentrale Düsseldorf (2000) Magnesiumtaschenbuch. Aluminium, DüsseldorfGoogle Scholar
  12. 12.
    Wolff J (1892) Das Gesetz der Transformation der Knochen. Hirschwald, BerlinGoogle Scholar
  13. 13.
    Turner CH (1992) J Biomech 25:1CrossRefGoogle Scholar
  14. 14.
    Tsubota K, Suzuki Y, Yamada T, Hojo M, Makinouchi A, Adachi T (2009) J Biomech 42(8):1088CrossRefGoogle Scholar
  15. 15.
    Verbrugge J (1934) La Press Med 23:460Google Scholar
  16. 16.
    Switzer E (2005) Resorbierbares metallisches Osteosynthesematerial. Dissertation, Stiftung Tierärztliche Hochschule, HannoverGoogle Scholar
  17. 17.
    Krause A, Hackenbroich C, von der Höh N, Wagner S, Bormann D, Hassel T, Windhagen H, Meyer-Lindenberg A (2005) Biomaterialien 6:190Google Scholar
  18. 18.
    Witte F, Michael B, Klement M, Goede F, Wirth CJ, Windhagen H (2005) In: Transactions of the 51st Annual Meeting of the Orthopaedic Research Society, Washington, DC.; No. 0989
  19. 19.
    Sha M, Guo Z, Fu J, Li J, Yuan CF, Shi F, Li SJ (2009) Acta Orthop 80:135CrossRefGoogle Scholar
  20. 20.
    Uctasli MB, Arisu HD, Lasilla LV, Valittu PK (2008) Eur J Dent 2:263Google Scholar
  21. 21.
    Meyer-Lindenberg A, Krause A, Krause C, Bormann D, Windhagen H (2007) Biomaterialien 8:180Google Scholar
  22. 22.
    Lass J (2005) Untersuchungen zur Entwicklung einer magnesiumgerechten Strangpresstechnologie. Books on demand, NorderstedtGoogle Scholar
  23. 23.
    Xu L, Yu G, Zhang E, Pan F, Yang K (2007) J Biomed Mater Res A 83:703CrossRefGoogle Scholar
  24. 24.
    Li Z, Gu X, Lou S, Zheng Y (2008) Biomaterials 29:1329CrossRefGoogle Scholar
  25. 25.
    von der Höh N, Krause A, Hackenbroich C, Bormann D, Lucas A, Meyer-Lindenberg A (2006) Dtsch Tierarztl Wochenschr 113:439Google Scholar
  26. 26.
    Witte F, Fischer J, Nellesen J, Crostack HA, Kaese V, Pisch A, Beckmann F, Windhagen H (2006) Biomaterials 27:1013CrossRefGoogle Scholar
  27. 27.
    Song G, Atrens A (1999) Adv Eng Mater 1:11CrossRefGoogle Scholar
  28. 28.
    Witte F, Kaese V, Haferkamp H, Switzer E, Meyer-Lindenberg A, Wirth CJ, Windhagen H (2005) Biomaterials 26:3557CrossRefGoogle Scholar
  29. 29.
    Revell P, Damien E, Zhang X, Evans P, Howlett C (2004) Key Eng Mater 254–256:447Google Scholar
  30. 30.
    Song G, Atrens A (2003) Adv Eng Mater 5:837CrossRefGoogle Scholar
  31. 31.
    von der Höh N, Bormann D, Lucas A, Denkena B, Hackenbroich C, Meyer-Lindenberg A (2009) Adv Eng Mater 11:B47CrossRefGoogle Scholar
  32. 32.
    Acarturk O, Lehmicke M, Aberman H, Toms D, Hollinger JO, Fulmer M (2007) J Biomed Mater Res B Appl Biomater. doi: CrossRefGoogle Scholar
  33. 33.
    Pardo A, Merino MC, Coy AE, Arrabal R, Viejo F, Matykina E (2008) Corros Sci 50:823CrossRefGoogle Scholar
  34. 34.
    Rettig R, Virtanen S (2008) J Biomed Mater Res A 85:167CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Annett Krause
    • 1
  • Nina von der Höh
    • 1
    Email author
  • Dirk Bormann
    • 2
  • Christian Krause
    • 2
  • Friedrich-Willhelm Bach
    • 2
  • Henning Windhagen
    • 3
  • Andrea Meyer-Lindenberg
    • 1
  1. 1.Small Animal ClinicUniversity of Veterinary Medicine HannoverHannoverGermany
  2. 2.Institute of Materials ScienceUniversity of HannoverGarbsenGermany
  3. 3.Department of OrthopaedicsMedical University of HannoverHannoverGermany

Personalised recommendations