Journal of Materials Science

, Volume 45, Issue 3, pp 607–615 | Cite as

Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymer

  • Sanjay KumarEmail author
  • Rakesh Kumar
  • S. P. Mehrotra


Ground granulated blast furnace slag (GBFS) has been used to alter the geopolymerisation behaviour of fly ash. The influence of varying amount of GBFS (5–50%) on the reaction kinetics has been studied using isothermal conduction calorimetry. It was observed that the reaction at 27 °C is dominated by the GBFS activation, whereas the reaction at 60 °C is due to combined interaction of fly ash and GBFS. The reaction product of geopolymerisation has been characterised using X-ray diffraction and scanning electron microscopy–X-ray microanalysis. Alumino–silicate–hydrate (A–S–H) and calcium–silicate–hydrate (C–S–H) gels with varying Si/Al and Ca/Si ratio are found to be the main reaction products. Coexistence of A–S–H and C–S–H gel further indicates the interaction of fly ash and GBFS during geopolymerisation. Attempt has been made to relate the microstructure with the properties of the geopolymers.


Compressive Strength Geopolymer Ground Granulate Blast Furnace Slag Granulate Blast Furnace Slag Alkali Activation 



The authors are grateful to Dr. Sukomal Ghosh, Acting Director, National Metallurgical Laboratory, Council for Scientist & Industrial Research, Jamshedpur, India for his kind permission to publish the paper. The fly ash used in the study was received from Grasim Cement, Rawan, Chattisgarh (India) and this is gratefully acknowledged. Authors also acknowledge the characterisation support from Mr. M. Gunjan and Mr. B. Mahato.


  1. 1.
    Davidovits J (1989) J Therm Anal 35(2):429CrossRefGoogle Scholar
  2. 2.
    Gartner E (2004) Cem Concr Res 34:1489CrossRefGoogle Scholar
  3. 3.
    Rahier H, Van Mele B, Biesemans M, Wastiels J, Wu X (1996) J Mater Sci 31:71. doi: CrossRefGoogle Scholar
  4. 4.
    Palomo A, De La Fuente JIL (2003) Cem Concr Res 33:281CrossRefGoogle Scholar
  5. 5.
    Krivenko PV (1994) In: Krivenko PV (ed) Proceedings of the first international conference on alkaline cements, concretes. VIPOL Stock Company, Kiev, Ukraine, p 11Google Scholar
  6. 6.
    Mallicoat S, Sarin P, Kriven WM (2005) Ceram Eng Sci Proc 26:37CrossRefGoogle Scholar
  7. 7.
    Sofi M, Van Deventer JSJ, Mendis PA, Lukey GC (2007) J Mater Sci 42(9):3007. doi: CrossRefGoogle Scholar
  8. 8.
    Bao Y, Grutzeck MW, Jantzen CM (2005) J Am Ceram Soc 88:3287CrossRefGoogle Scholar
  9. 9.
    Davidovits J (1988) In: Davidovits J, Orlinski J (eds) Proceedings of geopolymer ’88—first European conference on soft mineralurgy. Universite De Technologie De Compeigne, Compeigne, France, p 149Google Scholar
  10. 10.
    Khale D, Chaudhary R (2007) J Mater Sci 42:729. doi: CrossRefGoogle Scholar
  11. 11.
    Gordon M, Bell JL, Kriven WM (2005) Ceram Trans 165:95Google Scholar
  12. 12.
    Xu H, Van Deventer JSJ (2000) Int J Miner Proc 59:247CrossRefGoogle Scholar
  13. 13.
    Wang H, Li H, Yan F (2005) Colloids Surf A 268:1CrossRefGoogle Scholar
  14. 14.
    Duxson P, Mallicoat SW, Lukey GC, Kriven WM, Van Deventer JSJ (2007) Colloids Surf A 292:8CrossRefGoogle Scholar
  15. 15.
    Palomo A, Grutzeck MW, Blanco-Varela MT (1999) Cem Concr Res 29:1323CrossRefGoogle Scholar
  16. 16.
    Swanepoel JC, Strydom CA (2002) Appl Geochem 17:1143CrossRefGoogle Scholar
  17. 17.
    Van Jaarsveld JGS, Van Deventer JSJ (1999) Ind Eng Chem Res 38(10):3932CrossRefGoogle Scholar
  18. 18.
    Bakharev T (2005) Cem Concr Res 35:1233CrossRefGoogle Scholar
  19. 19.
    Hardjito D, Rangan BV (2006) Curtin research report on fly ash-based geopolymer concrete, Report GC 2. Curtin University of Technology, Australia, March 2006 Google Scholar
  20. 20.
    Rangan BV, Hardjito D, Wallah SE, Sumajouw DMJ (2005) In: Davidivits J (ed) Proceedings of 4th world congress on geopolymer, Saint Quentin, France, June 28–July 1, p 133Google Scholar
  21. 21.
    Fernandez-Jimenez A, Palomo A, Sobrados I, Sanz J (2006) Micropor Mesopor Mater 91:111CrossRefGoogle Scholar
  22. 22.
    Palomo A, Alonso S, Fernandez-Jimenez A, Sobrados J, Sanz J (2004) J Am Ceram Soc 87(6):1141CrossRefGoogle Scholar
  23. 23.
    Fernandez-Jimenez A, Palomo A (2003) Fuel 82:2259CrossRefGoogle Scholar
  24. 24.
    Skvara F, Bohunek J (1999) Ceramics-Silikaty 43(3):111Google Scholar
  25. 25.
    Puertas F, Martinez Ramirez S, Alonso S, Vazquez T (2000) Cem Concr Res 12(8):1625CrossRefGoogle Scholar
  26. 26.
    Komnitsas K, Zaharaki D, Perdikatsis V (2007) J Mater Sci 42:3073. doi: CrossRefGoogle Scholar
  27. 27.
    Goretta KC, Gutierrez-Mora F, Singh D et al (2007) J Mater Sci 42:3066. doi: CrossRefGoogle Scholar
  28. 28.
    Lloyd RR, Provis JL, Van Deventer JSJ (2009) J Mater Sci 44:608. doi: CrossRefGoogle Scholar
  29. 29.
    Kumar S, Kumar R, Alex TC, Bandopadhyay A, Mehrotra SP (2007) Adv Appl Ceram 106(3):120CrossRefGoogle Scholar
  30. 30.
    Kumar S, Kumar R, Alex TC, Bandopadhyay A, Mehrotra SP (2005) In: Davidovits J (ed) Proceedings of 4th World Congress on Geopolymer, France, June 28–July 1, p 113Google Scholar
  31. 31.
    Kumar S, Kumar R, Bandopadhyay A, Mehrotra SP (2007) In: Proceedings of international conference on alkali activated materials–research, production and utilization, Prague, Czech Republic, pp 429Google Scholar
  32. 32.
    Yip CK (2004) PhD Thesis, University of Melbourne, AustraliaGoogle Scholar
  33. 33.
    Shi C, Day RL (1999) Adv Cem Res 11(4):189CrossRefGoogle Scholar
  34. 34.
    Buchwald A, Dombrowski K, Weil M, (2005) In: Davidovits J (ed) Proceedings of 4th World Congress on Geopolymer, France, June 28–July 1, pp 35Google Scholar
  35. 35.
    Yip CK, Lukey GC, Van Deventer JSJ (2003) Ceram Trans 153:187Google Scholar
  36. 36.
    Li Z, Liu S (2007) J Mater Civ Eng 19(6):470CrossRefGoogle Scholar
  37. 37.
    Buchwald A, Hilbig H, Kaps Ch (2007) J Mater Sci 42:3024. doi: CrossRefGoogle Scholar
  38. 38.
    Duxson P, Fernandez-Jimenez A, Provis JL, Lukey GC, Palomo A, Van Deventer JSJ (2007) J Mater Sci 42:2917. doi: CrossRefGoogle Scholar
  39. 39.
    Yunsheng Z, Wei S, Qianli C, Lin C (2007) J Haz Mater 143:206CrossRefGoogle Scholar
  40. 40.
    Puertas F, Fernandez-Jimenez A (2003) Cem Concr Compos 25:287CrossRefGoogle Scholar
  41. 41.
    BIS specification IS 4031 (1988) Part 1 to 13, Methods of physical test for hydraulic cementGoogle Scholar
  42. 42.
    Granizo ML, Alonso S, Blanco-Varela MT, Palomo A (2002) J Am Ceram Soc 85:225CrossRefGoogle Scholar
  43. 43.
    Buchwald A, Tatarin R, Stephan D (2009) J Mater Sci 44:5609. doi: CrossRefGoogle Scholar
  44. 44.
    Yao X, Zhanga Z, Zhua H, Chena Y (2009) Thermochim Acta. doi: CrossRefGoogle Scholar
  45. 45.
    Mozgawa W, Deja J (2009) J Mol Struct 924–926:434CrossRefGoogle Scholar
  46. 46.
    Lloyd RR, Provis JL, Van Deventer JSJ (2009) J Mater Sci 44:620. doi: CrossRefGoogle Scholar
  47. 47.
    Richardson IG, Brough AR, Groves GW, Dobson CM (1994) Cem Concr Res 24:813CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.National Metallurgical LaboratoryCouncil of Scientific and Industrial ResearchJamshedpurIndia
  2. 2.Department of Materials and Metallurgical EngineeringIndian Institute of TechnologyKanpurIndia

Personalised recommendations