Journal of Materials Science

, Volume 45, Issue 3, pp 593–598 | Cite as

Gadolinium-doped cerium oxide nanorods: novel active catalysts for ethanol reforming

  • Mario Godinho
  • Rosana de F. Gonçalves
  • Edson R. Leite
  • Cristiane W. Raubach
  • Neftalí L. V. Carreño
  • Luiz F. D. Probst
  • Elson Longo
  • Humberto V. FajardoEmail author


The gadolinium-doped ceria nanorods (Gd0.2Ce0.8O2−x) were synthesized by hydrothermal treatment. It was shown that the use of microwave heating during hydrothermal treatment decreases the treatment time required to obtain gadolinium-doped ceria nanorods and that oriented attachment is the dominant mechanism responsible for anisotropic growth. It was clear that Gd0.2Ce0.8O2−x nanorods were more catalytically active than commercial CeO2 in the ethanol reforming reaction.


CeO2 Hydrothermal Treatment Microwave Heating Cerium Oxide Ethanol Conversion 



Financial support by FAPESP, FINEP and CNPq is gratefully acknowledged.


  1. 1.
    Kugai J, Velu S, Song C (2005) Catal Lett 101:255CrossRefGoogle Scholar
  2. 2.
    Laosiripojana N, Sutthisripok W, Assabumrungrat S (2007) Chem Eng J 127:31CrossRefGoogle Scholar
  3. 3.
    Al-Madfaa HA, Khader MM (2004) Mater Chem Phys 86:180CrossRefGoogle Scholar
  4. 4.
    Godinho MJ, Gonçalves RF, Santos LPS, Varela JA, Longo E, Leite ER (2007) Mater Lett 61:1904CrossRefGoogle Scholar
  5. 5.
    Wang S, Gu F, Li C, Cao H (2007) J Cryst Growth 307:386CrossRefGoogle Scholar
  6. 6.
    Jiguang LI, Ikegami T, Wang Y, Mori T (2003) J Am Ceram Soc 86:915CrossRefGoogle Scholar
  7. 7.
    Wang S, Maeda K (2002) J Am Ceram Soc 85:1750CrossRefGoogle Scholar
  8. 8.
    Kaneko K, Inoke K, Freitag B, Hungria AB, Midgley PA, Hansen TW, Zhang J, Ohara S, Adschiri T (2007) Nano Lett 7:421CrossRefGoogle Scholar
  9. 9.
    Zhou K, Wang X, Sun X, Peng Q, Li Y (2005) J Catal 229:206–212CrossRefGoogle Scholar
  10. 10.
    Mai HX, Sun LD, Zhang YW, Si R, Feng W, Zhang HP, Liu HC, Yan CH (2005) J Phys Chem B 109:24380CrossRefGoogle Scholar
  11. 11.
    Chen G, Li S, Jiao F, Yuan Q (2007) Catal Today 125:111CrossRefGoogle Scholar
  12. 12.
    Varisli D, Dogu T, Dogu G (2007) Chem Eng Sci 62:5349CrossRefGoogle Scholar
  13. 13.
    Sahaym U, Grant-Norton M (2008) J Mater Sci 43:5395. doi: CrossRefGoogle Scholar
  14. 14.
    Godinho M, Ribeiro C, Longo E, Leite ER (2008) Cryst Growth Des 8:384CrossRefGoogle Scholar
  15. 15.
    Idriss H (2004) Platinum Metals Rev 48:105CrossRefGoogle Scholar
  16. 16.
    Pourfayaz F, Mortazavi Y, Khodadadi A, Ajami S (2008) Sens Actuators B 130:625CrossRefGoogle Scholar
  17. 17.
    Fajardo HV, Probst LFD, Carreño NLV, Garcia ITS, Valentini A (2007) Catal Lett 119:228CrossRefGoogle Scholar
  18. 18.
    Hsiao W, Lin YS, Chen YC, Lee CS (2007) Chem Phys Lett 441:294CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Mario Godinho
    • 1
  • Rosana de F. Gonçalves
    • 2
  • Edson R. Leite
    • 2
  • Cristiane W. Raubach
    • 3
  • Neftalí L. V. Carreño
    • 3
  • Luiz F. D. Probst
    • 4
  • Elson Longo
    • 5
  • Humberto V. Fajardo
    • 6
    Email author
  1. 1.Centro Universitário do Leste de Minas GeraisCoronel FabricianoBrazil
  2. 2.Departamento de QuímicaUniversidade Federal de São CarlosSão CarlosBrazil
  3. 3.Departamento de Química Analítica e InorgânicaUniversidade Federal de PelotasCapão do LeãoBrazil
  4. 4.Departamento de QuímicaUniversidade Federal de Santa CatarinaFlorianópolisBrazil
  5. 5.Departamento de Bioquímica e Tecnologia QuímicaUniversidade Estadual PaulistaAraraquaraBrazil
  6. 6.Departamento de Química, Instituto de Ciências Exatas e BiológicasCampus Universitário s/n Bauxita, Universidade Federal de Ouro PretoOuro PretoBrazil

Personalised recommendations