Advertisement

Journal of Materials Science

, 45:582 | Cite as

Surface patterning nanoparticle-based arrays

  • Kathy Lu
  • Chase Hammond
  • Junmin Qian
Article

Abstract

In this study, focused ion beam lithography is used to pattern different size and shape island arrays on silicon wafers. Cavity arrays of inverse shapes are then made on silicone mold surfaces by polymerization. After that, Al2O3 nanoparticle-based island arrays are created by a surface feature transfer and freeze casting process using an Al2O3 colloidal suspension. The effects of silicone mold surface wettability and freezing rate on the Al2O3 nanoparticle pattern quality are investigated. The results show that coating the silicone mold surface with a 10 nm thick Au–Pt layer makes the Al2O3 nanoparticle suspension more wetting on the mold surface and also likely reduces the dry Al2O3 nanoparticle adhesion to the mold surface. Freezing rate should be lower than 1 °C/min to avoid cracks or loose Al2O3 nanoparticle packing in the freeze cast features. When these factors are properly controlled, the reported patterning process allows reproduction of micron-size feature arrays from Al2O3 nanoparticle suspensions. The studied approach should be applicable to most nanoparticle-based materials and open numerous opportunities for direct-device fabrication.

Keywords

Mold Mold Cavity Mold Surface Freezing Rate Al2O3 Nanoparticle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

The authors acknowledge the financial support from National Science Foundation under Grant No. CMMI-0824741.

References

  1. 1.
    Shapley JDL, Barrow DA (2001) Thin Solid Films 388:134CrossRefADSGoogle Scholar
  2. 2.
    Huang J, Moriyoshi T, Manabe H (2006) J Mater Sci 41:1605. doi: 10.1007/s10853-006-4655-7 CrossRefADSGoogle Scholar
  3. 3.
    Huwiler C, Halter M, Rezwan K, Falconnet D, Textor M, Vörös J (2005) Nanotechnology 16:3045CrossRefADSGoogle Scholar
  4. 4.
    Asoh H, Sakamoto S, Ono S (2007) J Colloid Interface Sci 316:547CrossRefPubMedGoogle Scholar
  5. 5.
    Park I, Ko SH, Pan H, Grigoropoulos CP, Pisano AP, Fréchet JMJ, Lee ES, Jeong JJ (2008) Adv Mater 20:489CrossRefGoogle Scholar
  6. 6.
    Liu K, Ho CL, Aouba S, Zhao YQ, Lu ZH, Petrov S, Coombs N, Dube P, Ruda HE, Wong WY, Manners I (2008) Angew Chem Int Ed 47:1255CrossRefGoogle Scholar
  7. 7.
    Xia D, Li D, Luo Y, Brueck SRJ (2006) Adv Mater 18:930CrossRefGoogle Scholar
  8. 8.
    Jung B, Frey W (2008) Nanotechnology 19:145303CrossRefADSGoogle Scholar
  9. 9.
    Ofir Y, Samanta B, Xiao QJ, Jordan BJ, Xu H, Arumugam P, Arvizo R, Tuominen MT, Rotello VM (2008) Adv Mater 20:2561CrossRefGoogle Scholar
  10. 10.
    Park JI, Lee WR, Bae SS, Kim YJ, Yoo KH, Cheon JW, Kim S (2005) J Phys Chem B 109:13119CrossRefPubMedGoogle Scholar
  11. 11.
    Brom CRVD, Arfaoui I, Cren T, Hessen B, Palstra TTM, Hosson JTMD, Rudolf P (2007) Adv Funct Mater 17:2045CrossRefGoogle Scholar
  12. 12.
    Kang M, Kim H, Han BW, Suh JS, Park JH, Choi MS (2004) Microelectronic Eng 71:229CrossRefGoogle Scholar
  13. 13.
    Maury P, Escalante M, Reinhoudt DN, Huskens J (2005) Adv Mater 17:2718CrossRefGoogle Scholar
  14. 14.
    Ma B, Ma J, Goh GKL (2008) J Mater Sci 43:4297. doi: 10.1007/s10853-008-2627-9 CrossRefADSGoogle Scholar
  15. 15.
    Yoldi M, Gonzalez-Vinas W, Arcos MC, Sirera R (2006) J Mater Sci 41:2965. doi: 10.1007/s10853-006-6717-2 CrossRefADSGoogle Scholar
  16. 16.
    Crocker M, Graham UM, Gonzalez R, Jacobs G, Morris E, Rubel AM, Andrews R (2007) J Mater Sci 42:3454. doi: 10.1007/s10853-006-0829-6 CrossRefADSGoogle Scholar
  17. 17.
    Sreethawong T, Chavadej S, Ngamsinlapasathian S, Yoshikawa S (2008) Microporous Mesoporous Mater 109:84CrossRefGoogle Scholar
  18. 18.
    Han L, Shi XJ, Wu W, Kirk FL, Luo J, Wang LY, Mott D, Cousineau L, Lim SI, Lu S, Zhong CJ (2005) Sens Actuators B 106:431CrossRefGoogle Scholar
  19. 19.
    Puetz J, Aegerter MA (2008) Thin Solid Films 516:4495CrossRefADSGoogle Scholar
  20. 20.
    Lin HY, Tsai LC, Chen CD (2007) Adv Funct Mater 17:3182CrossRefGoogle Scholar
  21. 21.
    Cui TH, Hua F, Lvov Y (2004) Sens Actuators A 114:501CrossRefGoogle Scholar
  22. 22.
    Lu K, Hammond C, Int J Appl Ceram Technol (submitted)Google Scholar
  23. 23.
    Lu K, Zhu X (2008) Int J Appl Ceram Technol 5(3):219CrossRefGoogle Scholar
  24. 24.
    Lu K (2008) J Mater Sci 43(2):652. doi: 10.1007/s10853-007-2155-z CrossRefADSGoogle Scholar
  25. 25.
    Lu K (2007) J Am Ceram Soc 90(12):3753Google Scholar
  26. 26.
    Lu K, Kessler CS, Davis RM (2006) J Am Ceram Soc 89:2459CrossRefGoogle Scholar
  27. 27.
    Lu K, Kessler CS (2006) In: Mullins WN, Wereszczak A, Lara-Curzio E (eds) Ceram engineering and science proceedings, vol 27(8), pp 1–10Google Scholar
  28. 28.
    Cesarano J, Aksay IA (1988) J Am Ceram Soc 71:1062CrossRefGoogle Scholar
  29. 29.
    Lu K (2009) J Nanosci Nanotechnol 9:2598CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringVirginia Polytechnic Institute and State UniversityBlacksburgUSA

Personalised recommendations