A novel rock-like nanoarchitecture of YVO4:Eu3+ phosphor: selective synthesis, characterization, and luminescence behavior

  • S. Ray
  • A. Banerjee
  • P. Pramanik


A facile, surfactant-mediated strategy involving ‘oriented attachment’ assisted self-assembly of rice-like and grape-like nanostructures resulted into a novel encapsulated rock-like luminescent YVO4:Eu3+ nanoarchitecture in aqueous medium. It is shown that a characteristic crystallization behavior of YVO4:Eu3+ leads to the growth of a rice-like shape in a template-free reaction system. In presence of a surfactant, these rice-like structures in the vicinity of the micellar head groups self-assemble to form nanograpes and ultimately produce rock-like nanostructures upon prolonged autoclaving. The rock-like nanocrystalline phosphors, having an average area of 2798 nm2, are composed of an inner nucleus and a surrounding shell-like cover, as evidenced from the transmission electron microscopy images. Finally, the room temperature photoluminescence spectra demonstrate that the morphology of the nanophosphors has immense influence on their chromaticity.


Tetragonal Phase HRTEM Image Cetyl Trimethyl Ammonium Bromide Selective Area Electron Diffraction Pattern YVO4 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Zeng JH, Li ZJ, Su J, Wang L, Yan R, Li Y (2006) Nanotechnology 17:3549CrossRefPubMedADSGoogle Scholar
  2. 2.
    Murugan AV, Viswanath AK, Kakade B, Ravi V, Saaminathan V (2006) J Phys D Appl Phys 39:3974CrossRefGoogle Scholar
  3. 3.
    Hu JT, Odom TW, Lieber CM (1999) Acc Chem Res 32:435CrossRefGoogle Scholar
  4. 4.
    Ghosh P, Sadhu S, Patra A (2006) Phys Chem Chem Phys 8:3342CrossRefPubMedGoogle Scholar
  5. 5.
    De G, Qin W, Zhang J, Zhang Y, Wang Y, Cao C, Cui Y (2006) J Lumin 258:119Google Scholar
  6. 6.
    Mehta A, Thundat T, Barnes MD, Chhabra V, Bhargava R, Bartko AP, Dickson RM (2003) Appl Opt 42:2132CrossRefPubMedADSGoogle Scholar
  7. 7.
    Stouwdam JW, Van Veggel CJ (2002) Nano Lett 2:733CrossRefADSGoogle Scholar
  8. 8.
    Ghosh P, Patra A (2008) J Nanosci Nanotech 8:3458CrossRefGoogle Scholar
  9. 9.
    Bu W, Chen H, Hua Z, Liu Z, Huang W, Zhang L, Shi J (2004) Appl Phys Lett 85:4307CrossRefADSGoogle Scholar
  10. 10.
    Levine AK, Pallilla FC (1964) Appl Phy Lett 5:118CrossRefADSGoogle Scholar
  11. 11.
    Meng X, Zhu L, Zhang H, Wang C, Chow Y, Lu M (1999) J Cryst Growth 200:199CrossRefADSGoogle Scholar
  12. 12.
    Riwotzki A, Haase M (1998) J Phys Chem B 102:10129CrossRefGoogle Scholar
  13. 13.
    Huignard A, Buissette V, Laurent G, Gacoin T, Boilot J-P (2002) Chem Mater 14:2264CrossRefGoogle Scholar
  14. 14.
    Kambaram SE, Patil KC (1995) J Alloys Compd 217:104CrossRefGoogle Scholar
  15. 15.
    Erdei S, Schlecht R, Ravichandran D (1995) Displays 19:173CrossRefGoogle Scholar
  16. 16.
    Newport A, Silver J, Vecht A (2000) J Electrochem Soc 147:3944CrossRefGoogle Scholar
  17. 17.
    Sun LD, Zhang YX, Zhang J, Yan CH, Liao CS, Lu YQ (2002) Solid State Commun 124:35CrossRefADSGoogle Scholar
  18. 18.
    Zhang H, Fu X, Niu S, Sun G, Xin Q (2004) J Solid State Chem 177:2649CrossRefADSGoogle Scholar
  19. 19.
    Wu H, Xu H, Su Q, Chen T, Wu M (2003) J Mater Chem 13:1223CrossRefGoogle Scholar
  20. 20.
    Wu X, Tao Y, Song C, Mao C, Dong L, Zhu J (2006) J Phys Chem B 110:15791CrossRefPubMedGoogle Scholar
  21. 21.
    Wu X, Tao Y, Mao C, Liu D, Mao Y (2006) J Cryst Growth 290:207CrossRefADSGoogle Scholar
  22. 22.
    Ray S, Banerjee A, Pramanik P (2009) Mater Sci Eng B 156:10CrossRefGoogle Scholar
  23. 23.
    Wang X, Li Y (2002) Angew Chem Int Ed 41:4790CrossRefGoogle Scholar
  24. 24.
    Cho K-S, Talapin DV, Gaschler W, Murray CB (2005) J Am Chem Soc 127:7140CrossRefPubMedGoogle Scholar
  25. 25.
    Yu H, Joo J, Park H, Baik S-I, Kim YW, Kim SC, Hyeon T (2005) J Am Chem Soc 127:5662CrossRefPubMedGoogle Scholar
  26. 26.
    Deng Z, Chen D, Tang F, Meng X, Ren J, Zhang J (2007) J Phys Chem C 111:5325CrossRefGoogle Scholar
  27. 27.
    Silverstein RM, Webster FX, Kiemle D (2005) Spectrometric identification of organic compounds. Wiley, New YorkGoogle Scholar
  28. 28.
    Judd BR (1962) Phys Rev 127:750CrossRefADSGoogle Scholar
  29. 29.
    Ofelt GS (1962) J Chem Phys 37:511CrossRefADSGoogle Scholar
  30. 30.
    Manjo’n FJ, Jandl S, Riou G, Ferrand B, Syassen K (2004) Phys Rev B 69:165121CrossRefADSGoogle Scholar
  31. 31.
    Yu M, Lin J, Wang Z, Fu J, Wang S, Zhang HJ, Hun Y (2002) Chem Mater 14:2224CrossRefGoogle Scholar
  32. 32.
    Yu M, Lin J, Fang J (2005) J Chem Mater 17:1783CrossRefGoogle Scholar
  33. 33.
    Su Q, Lin J, Li B (1995) J Alloys Compd 225:120CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of ChemistryIndian Institute of TechnologyKharagpurIndia

Personalised recommendations