Advertisement

Surfactant-assisted fabrication of MoS2 nanospheres

  • Zhuangzhi Wu
  • Dezhi Wang
  • Aokui Sun
Article

Abstract

The fabrication of MoS2 nanospheres with an average diameter of 100 nm via a surfactant-assisted route was reported, in which an amorphous MoS3 precursor was obtained by the aggregation transformation of surfactant at a low temperature and then transformed to the MoS2 nanospheres with quasi-fullerene structures by thermal decomposition. The final products were characterized by XRD, IR, SEM, and TEM, respectively. The results indicate that the polyethylene glycol (PEG) promotes the formation of nanospheres and has a great effect on the microstructures, resulting in the abnormal expansion of lattice. The possible transformation mechanism of structures has been discussed based on the experimental results.

Keywords

MoS2 Lattice Expansion Binding Effect Interlayer Distance Abnormal Expansion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Chianelli RR, Prestridge EB, Pecoraro TA, DeNeufville JP (1979) Science 203:1105CrossRefPubMedADSGoogle Scholar
  2. 2.
    Chen J, Li S, Xu Q, Tanaka K (2002) Chem Commun 1722Google Scholar
  3. 3.
    Wang J, Zhao WZ, Guo CW (2009) J Mater Sci 44:227. doi: 10.1007/s10853-008-3082-3 CrossRefGoogle Scholar
  4. 4.
    Zhu YQ, Sekine T, Li YH, Wang WX, Fay MW, Edwards H, Brown PD, Fleischer N, Tenne R (2005) Adv Mater 17:1500CrossRefGoogle Scholar
  5. 5.
    Winter M, Besenhard JQ, Spahr ME, Novak P (1998) Adv Mater 10:725CrossRefGoogle Scholar
  6. 6.
    Feldman Y, Wasserman E, Srolovitz DJ, Tenne R (1995) Science 267:222CrossRefPubMedADSGoogle Scholar
  7. 7.
    Parilla PA, Dillon AC, Jones KM, Riker G, Schulz DL, Ginley DS, Heben MJ (1999) Nature 397:114CrossRefADSGoogle Scholar
  8. 8.
    Zheng XW, Zhu LY, Yan AH, Bai CN, Xie Y (2004) Ultrason Sonochem 11:83CrossRefPubMedGoogle Scholar
  9. 9.
    Li WJ, Shi EW, Ko J, Chen ZZ, Ogino H, Fukuda T (2003) J Cryst Growth 250:418CrossRefADSGoogle Scholar
  10. 10.
    Shi HQ, Fu X, Zhou XD, Wang DB, Hu ZS (2006) J Solid State Chem 179:1690CrossRefADSGoogle Scholar
  11. 11.
    Nath M, Govindaraj A, Rao CN (2001) Adv Mater 13:283CrossRefGoogle Scholar
  12. 12.
    Du K, Fu WY, Wei RH, Yang HB, Liu SK, Liu SD, Yu SD, Zou GT (2007) Mater Lett 61:4887CrossRefGoogle Scholar
  13. 13.
    Chang LX, Yang HB, Fu WY, Zhang JZ, Yu QJ, Zhu HY, Chen JJ, Wei RH, Sui YM, Pang XF, Zou GT (2008) Mater Res Bull 43:2427CrossRefGoogle Scholar
  14. 14.
    Huang WZ, Xu ZD, Liu R, Ye XF, Zheng YF (2008) Mater Res Bull 43:2799CrossRefGoogle Scholar
  15. 15.
    Luo H, Xu C, Zou DB, Wang L, Ying TK (2008) Mater Lett 62:3558CrossRefGoogle Scholar
  16. 16.
    Wu DM, Zhou XD, Fu X, Shi HQ, Wang DB, Hu ZS (2006) J Mater Sci 41:5682. doi: 10.1007/s10853-006-0245-y CrossRefADSGoogle Scholar
  17. 17.
    Wu ZZ, Wang DZ, Xu B (2008) Acta Phys-Chim Sin 24:1927 (In Chinese)Google Scholar
  18. 18.
    Srolovitz DJ, Safran SA, Homyonfer M, Tenne R (1995) Phys Rev Lett 74:1779CrossRefPubMedADSGoogle Scholar
  19. 19.
    Berdinsky AS, Chadderton LT, Yoo JB, Gutakovsky AK, Fedorov VE, Mazalov LN, Fink D (2005) Appl Phys A 80:61CrossRefADSGoogle Scholar
  20. 20.
    Afanasiev P, Xia G, Berhault G, Jouguet B, Lacroix M (1999) Chem Mater 11:3216CrossRefGoogle Scholar
  21. 21.
    Peng YY, Meng ZY, Zhong C, Lu J, Yu WC, Yang ZP, Qian YT (2001) J Solid State Chem 159:170CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringCentral South UniversityChangshaPeople’s Republic of China

Personalised recommendations