Skip to main content
Log in

Synthesis and photoluminescence properties of LiEu(W,Mo)2O8:Bi3+ red-emitting phosphor for white-LEDs

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

LiEu1−x(W2−yMoy)O8:xBi3+ series red-emitting phosphors were synthesized by solid state reaction. The structure, morphology, and photoluminescent properties of phosphors were studied by X-ray powder diffraction, scanning electron microscopy, and photoluminescence spectrum, respectively. X-ray powder diffraction analysis showed that the as-obtained phosphors belong to the scheelite structure. The average particle size of the investigated phosphor was about 8 μm. The excitation spectrum exhibits a charge-transfer broad band along with some sharp peaks from the typical 4f–4f transitions of Eu3+. Under excitation of UV, near-UV, or blue light, these phosphors showed strong red emission at 615 nm due to 5D07F2 transition of Eu3+. The incorporation of Mo6+ into LiEuW2O8:Bi3+ could induce red-shift of the charge-transfer broad band and a remarkable increase of photoluminescence. The highest red-emission intensity was observed with LiEu0.80Mo2O8:0.20Bi3+. Compared with the commercial red-emitting phosphor, Y2O2S:Eu3+, the emission intensity of LiEu0.80Mo2O8:0.20Bi3+ phosphor is much stronger than that of Y2O2S:Eu3+ and its chromaticity coordinates are closer to the standard values than that of the commercial phosphor. The optical properties of LiEu0.80Mo2O8:0.20Bi3+ phosphor make it attractive for the application in white-light-emitting diodes (LEDs), in particular for near-UV InGaN-based white-LEDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nakamura S, Fasol G (1996) The blue laser: GaN based light emitters and lasers. Springer, Berlin, p 216

    Google Scholar 

  2. Jüstel T, Nikel H, Ronda C (1998) Angew Chem Int Ed 37:3084

    Article  Google Scholar 

  3. Schubert EF, Kim JK (2005) Science 308:1274

    Article  CAS  Google Scholar 

  4. Shionoya S, Yen WM (1999) Phosphor handbook. CRC Press, New York

    Google Scholar 

  5. Hu Y, Zhuang W, Ye H et al (2005) J Lumin 111:139

    Article  CAS  Google Scholar 

  6. He XH, Zhu Y (2008) J Mater Sci 43(5):1515. doi:https://doi.org/10.1007/s10853-007-2359-2

    Article  CAS  Google Scholar 

  7. Shi G (2007) Semiconductor light-emitting diodes and solid state lighting. Science Press, Beijing In Chinese

    Google Scholar 

  8. Uheda K, Hirosaki N, Yamamoto Y, Naito A, Nakajima T, Yamamoto H (2006) Electrochem Solid State Lett 9(4):H22

    Article  CAS  Google Scholar 

  9. Toquin RL, Cheetham A (2006) Chem Phys Lett 423:352

    Article  Google Scholar 

  10. Neeraj S, Kijima N, Cheetham AK (2004) Chem Phys Lett 387:2

    Article  CAS  Google Scholar 

  11. Wu H, Zhang X, Guo C, Xu J, Wu M, Su Q (2005) IEEE Photonics Technol Lett 17:1160

    Article  CAS  Google Scholar 

  12. Xie RJ, Hirosaki N, Kiumra N, Sakuma K, Mitomo M (2007) Appl Phys Lett 90:191101

    Article  Google Scholar 

  13. Piao X, Horikawa T, Hanzawa H, Machida K (2006) Appl Phys Lett 88:161908

    Article  Google Scholar 

  14. Duan CJ, Delsing ACA, Hintzen HT (2009) Chem Mater 21(6):1010

    Article  CAS  Google Scholar 

  15. Saradhi MP, Pralong V, Varadaraju UV, Raveau B (2009) Chem Mater 21(9):1793

    Article  CAS  Google Scholar 

  16. Gundiah G, Shimomura Y, Kijima N, Cheetham AK (2008) Chem Phy Lett 455:279

    Article  CAS  Google Scholar 

  17. Uhlich D, Plewa J, Jüstel T (2008) J Lumin 128:1649

    Article  CAS  Google Scholar 

  18. Won Y, Jang HS, Im WB, Jeon DY (2008) J Electrochem Soc 155(9):J226

    Article  CAS  Google Scholar 

  19. Guo C, Li B, Jin F (1991) Chin J Lumin 12(2):118

    Google Scholar 

  20. Macalik L, Hanuza J, Sokolnicki J, Legendziewicz J (1999) Spectrochimica Acta A 55:251

    Article  Google Scholar 

  21. Kato A, Oishi S, Shishido T, Yamazaki M, Iida S (2005) J Phys Chem Solids 66:2079

    Article  CAS  Google Scholar 

  22. Cascales C, Mendez BA, Rico M, Volkov V, Zaldo C (2005) Opt Mater 27:1672

    Article  CAS  Google Scholar 

  23. Chiu CH, Wang MF, Lee CS, Chen TM (2007) J Solid State Chem 180:619

    Article  CAS  Google Scholar 

  24. Van Vliet JPM, Blasse G, Brixner LH (1988) J Solid State Chem 76(1):160

    Article  Google Scholar 

  25. Wang J, Jing X, Yan C et al (2006) J Lumin 121:57

    Article  CAS  Google Scholar 

  26. Sivakumar V, Varadaraju UV (2007) J Electrochem Soc 154(1):J28

    Article  CAS  Google Scholar 

  27. Jorgensen CK (1962) Absorption spectra and chemical bonding in complexes. Pergamon Press, Oxford

    Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Jinping Huang of Shanghai Normal University for assistance with the XRD measurements. Financial support from the Natural Science Research Project of the Jiangsu Higher Education Institutions (08KJD150014), the QingLan Project of the Jiangsu Province (2008), and the Basic Research Fund of Jiangsu Teachers University of Technology is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang-Hong He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, XH., Guan, MY., Sun, JH. et al. Synthesis and photoluminescence properties of LiEu(W,Mo)2O8:Bi3+ red-emitting phosphor for white-LEDs. J Mater Sci 45, 118–123 (2010). https://doi.org/10.1007/s10853-009-3900-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3900-2

Keywords

Navigation