Skip to main content
Log in

Brazing of carbon–carbon composites to Nimonic alloys

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Industrially produced Cf/C ceramic composites have been brazed to Nimonic alloys using a TiCuSil filler metal. Ιn order to accommodate the different linear coefficients of expansion between ceramic and metal as well as to provide compatibility between the surfaces to be joined, the Cf/C surface was metallized through the deposition of a chromium layer. Subsequent heat treatments were carried out to develop intermediate layers of chromium carbides. Crack-free joints have been produced and shear tests show that failure occurs within the composite. At the Cf/C-filler interface a layered structure of the metallic elements is observed. Titanium is depleted from the filler zone and interacts with the carbon to form carbides. In the filler region, Ag and Cu rich regions are formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Schmidt S, Beyer S, Knabe H, Immich H, Meistring R, Gessler A (2004) Acta Astronaut 55:409

    Article  Google Scholar 

  2. Merola M, Akiba M, Barabash V, Mazul I (2002) J Nucl Mater 307:1524

    Article  Google Scholar 

  3. Goodman D, Singler R (1998) NASA CR 97:206679

    Google Scholar 

  4. Nicholas MG, Peteves SD (1994) Scr Metall Mater 31:1091

    Article  CAS  Google Scholar 

  5. Peteves SD, Paulasto M, Ceccone G, Stamos V (1998) Acta Mater 46:2407

    CAS  Google Scholar 

  6. Ashworth MA, Jacobs MH, Davies S (2000) Mater Design 21:351

    Article  CAS  Google Scholar 

  7. Morscher GN, Singh M, Shpargel TP, Asthana R (2006) Mater Sci Eng A418:19

    Article  CAS  Google Scholar 

  8. Trester PW, Valentine PG, Johnson WR, Chin E (1996) J Nucl Mater 233–237:9

    Google Scholar 

  9. Salvo M, Ferraris M, Lemoine P, Appendine M (1996) J Nucl Mater 233–237:949

    Article  Google Scholar 

  10. Gotoh Y, Okamura H, Kajiura S (1998) J Nucl Mater 258–263:271

    Article  Google Scholar 

  11. Salvo M, Lemoine P, Ferraris M, Appendino Montorsi M, Matera R (1995) J Nucl Mater 226:67

    Article  CAS  Google Scholar 

  12. Liu JY, Chen S, Chin BA (1994) J Nucl Mater 212–215:1590

    Article  Google Scholar 

  13. Appendino P, Casalegno V, Ferraris M, Grattarola M, Merola M, Salvo M (2003) Fusion Eng Des 66–68:225

    Article  Google Scholar 

  14. Singh M, Shpargel TP, Morscher GN, Asthana R (2005) Mater Sci Eng A 412:123

    Article  Google Scholar 

  15. Youqiong Q, Jicai F (2007) Mater Sci Eng A 454–455:322

    Google Scholar 

  16. Merola M, Danner W, Palmer J, Vielder G, Wu CH (2003) Fusion Eng Des 66–68:211

    Article  Google Scholar 

  17. Isola C, Salvo M, Ferraris M (1998) J Eur Ceram Soc 18:1017

    Article  CAS  Google Scholar 

  18. Schedler B, Huber T, Friedrich T, Eidenberger E, Kapp M, Scheu C, Pippan R, Clemens H (2007) Phys Scr T 128:200

    Article  Google Scholar 

  19. Appendino P, Ferraris M, Casalegno V, Salvo M, Merola M, Grattarola M (2004) J Nucl Mater 329–333:1563

    Article  Google Scholar 

  20. Ferraris M, Casalegno V, Salvo M (2005) Process to join carbon based materials to metals and its applications. Patent WO/2005/037734

  21. Libera S, Visca E (2006) Junction process for a ceramic material and a metallic material with the interposition of a transition material. Patent WO/2006/024971

  22. Revirand P, Michel J, Benoit D, Fromentin JF, Gillia O (2007) Brazed joint between a metal part and a ceramic part. Patent WO/2007/066053

  23. Hanson WB, Ironside KI, Fernie JA (2000) Acta Mater 48(18–19):4673

    Article  CAS  Google Scholar 

  24. Morizono Y, Nishida M, Chiba A, Nakata T (2004) J Ceramic Soc Japan 112(6):305

    Article  CAS  Google Scholar 

  25. Loehman RE (1989) Am Ceram Soc Bull 68:890

    Google Scholar 

  26. Eustathopoulos N, Nicholas MG, Drevet B (1999) Wettability at high temperatures. Pergamon, Amsterdam

    Google Scholar 

  27. Standing R, Nicholas M (1978) J Mater Sci 13:1509. doi:https://doi.org/10.1007/BF00553207

    Article  CAS  Google Scholar 

  28. Li JG (1992) J Mater Sci Lett 11:1551

    Article  CAS  Google Scholar 

  29. Grigorenko N, Poluyanskaya V, Eustathopoulos N, Naidich Y (1998) In: Bellosi A, Kosmac T, Tomsia AP (eds) Interfacial science of ceramics joining. Kluwer Academic Publishers, Boston, pp 69–78

    Google Scholar 

  30. Grigorenko N, Poluyanskaya V, Eustathopoulos N, Naidich YV (1997) In: Eustathopoulos N, Sobczak N (eds) Proceedings of the Second International conference on high-temperature capillarity, Foundry Residential Institute, Krakow, pp 27–35

  31. Singh M, Shpargel TP, Morscher G, Asthana R (2005) In: Singh M, Kerans RJ, Lara-Curzio E, Naslain R (eds) Proceedings of the fifth international conference on high-temperature ceramic–matrix composites (HTCMC-5), The American Ceramic Society, Westerville, OH, pp 457–462

  32. Moutis NV, Jimenez C, Speliotis T, Azpiroz X, Mergia K (2009) Adv Mater Res 59:209

    Article  CAS  Google Scholar 

  33. Singh M, Asthana R, Shpargel TP (2007) Mater Sci Eng A 452–453:699

    Article  Google Scholar 

  34. Balseiro CA, Merán-Lôpez JJ (1989) Phys Rev B21:349

    Google Scholar 

  35. Van Loo FJJ, Bastin GF (1989) Metall Trans A 20:403

    Article  Google Scholar 

  36. Zhu Y, Wang L, Yao W, Cao L (2001) App Surf Sci 171:143

    Article  CAS  Google Scholar 

  37. ICDD PDF:36-1482

  38. Singh M, Asthana R (2008) Compos Sci Technol 68:3010

    Article  CAS  Google Scholar 

  39. Kleykamp H (2001) J Alloys Compd 321:138

    Article  CAS  Google Scholar 

  40. Zhang S, Wu WT, Wang MC, Man HC (2001) Surf Coat Technol 138:95

    Article  CAS  Google Scholar 

  41. Morscher GN, Singh M, Shpargel T, Asthana R (2006) Mater Sci Eng A 418:19

    Article  Google Scholar 

  42. Li M, Matsuyama R, Sakai M (1999) Carbon 37:1749

    Article  CAS  Google Scholar 

  43. Iwashita N, Sawada Y, Shimizu K, Shinke S, Shioyama H (1995) Carbon 33:405

    Article  CAS  Google Scholar 

  44. Fujita K, Sakai H, Iwashita N, Sawada Y (1999) Composites Part A 30:497

    Article  Google Scholar 

Download references

Acknowledgments

This study has been carried out within the framework of the Integrated European Project “ExtreMat” (contract NMP-CT-2004-500253) with financial support by the European Community.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Moutis.

Additional information

The article only reflects the views of the authors and the European Community is not liable for any use of the information contained therein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moutis, N.V., Jimenez, C., Azpiroz, X. et al. Brazing of carbon–carbon composites to Nimonic alloys. J Mater Sci 45, 74–81 (2010). https://doi.org/10.1007/s10853-009-3893-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3893-x

Keywords

Navigation