Skip to main content
Log in

Nanostructure characterization of polymer-stabilized gold nanoparticles and nanofilms derived from green synthesis

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The fabrication and characterization of gold (Au) nanostructured materials draws significant attention because of their distinctive properties and their technological applications. The first objective of this study is to fabricate polymer-stabilized Au nanoparticles and nanofilms (PAN) through a cost effective and green synthetic methodology. In this study, the gold trication (Au3+) can be spontaneously converted into metallic gold atom using a non-toxic reductant (ascorbic acid). The ultrafine Au clusters were formed and stabilized through metallic bonds in the colloidal suspension, which was then deposited on a micro-glass or polymer-bead substrate to prepare thin films. It was found that ascorbic acid was the best reducing agent due to its rapid rate, spontaneity of reaction, and its non-toxic nature. In order to prevent aggregation of the nanoparticles, a dispersing agent (gum Arabic) was used. The second objective of this study was to analyze the PAN using a number of state-of-the-art instrumentation techniques and analytical approaches, such as X-ray powder diffraction (XRD), atomic force microscopy (AFM), scanning and transmission electron microscopy (SEM and TEM), ultraviolet–visible (UV–Vis) spectroscopy, and ZetaPALS. These techniques were applied to evaluate specific properties of the PAN, such as characterization of its crystalline phase, surface topology, characteristic plasmon, particle size distribution, and stability. From this study, it can be concluded that the ultrafine Au nanoparticles and uniform films were obtained using the green chemistry method. The ultrafine Au particles are highly stabilized and monodispersed as demonstrated by their high absolute value of zeta potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

Au:

Gold

GA:

Gum arabic

NPs:

Nanoparticles

PAN:

Polymer-stabilized Au nanoparticle and nanofilm

XRD:

X-ray powder diffraction

AFM:

Atomic force microscopy

SEM:

Scanning electron microscopy

TEM:

Transmission electron microscopy

EDS:

X-ray energy dispersive spectroscopy

UV–Vis:

Ultraviolet visible spectroscopy

References

  1. Sokolov K, Nida D, Descour M, Lacy A, Levy M, Hall B, Dharmawardhane S, Ellington A, Korgel B, Richards-Kortum R (2007) Adv Cancer Res 96:299

    Article  CAS  Google Scholar 

  2. Kelsall R, Hamley IW, Geoghegan M (2005) Nanoscale science and technology. Wiley, New Jersey

  3. Drexler E, Peterson C, Pergamit G (1991) Unbounding the future: the nanotechnology revolution. William Morrow and Company, New York

    Google Scholar 

  4. Drexler KE (1990) Engines of creation: the coming era of nanotechnology. Bantam Dell Publishing Group Inc (Random House), New York

    Google Scholar 

  5. Drexler KE (1992) Nanosystems: molecular machinery, manufacturing, and computation. Wiley, New Jersey

    Google Scholar 

  6. Wang ZL (2003) Nanowires and nanobelts materials, properties and devices nanowires and nanobelts of functional materials (I). Kluwer Academic Publishers, Norwell

    Google Scholar 

  7. Weiss PS, Lewis PA (2007) ACS Nano 1:145

    Article  CAS  Google Scholar 

  8. Vauthey S, Santoso S, Gong H, Watson N, Zhang S (2002) Biophysics 16:5355

    Google Scholar 

  9. Csáki A, Möller R, Straube W, Köhler JM, Fritzschea W (2001) Nucleic Acids Res 16:1

    Google Scholar 

  10. Garzoń IL, Artacho E, Beltrań MR, Garćia A, Junquera J, Michaelian K, Ordejoń P, Rovira C, Sanchez-Portaĺ D, Soler JM (2001) Nanotechnology 12:126

    Article  Google Scholar 

  11. Chen CS (2008) Nat Nanotechnol 3:13

    Article  CAS  Google Scholar 

  12. Li Z, Jin R, Mirkin CA, Letsinger RL (2002) Nucleic Acids Res 30:1558

    Article  CAS  Google Scholar 

  13. Rosi NL, Giljohann DA, Thaxton CS, Lytton-Jean AKR, Han MS, Mirkin CA (2006) Science 312:1027

    Article  CAS  Google Scholar 

  14. Chen K, Adelstein SJ, Kassis AI (2004) J Mol Struct Theochem 711:49

    Article  CAS  Google Scholar 

  15. Glomm WR (2005) J Dispers Sci Technol 26:389

    Article  CAS  Google Scholar 

  16. Lévy R, Thanh NTK, Doty RC, Hussain I, Nichols RJ, Schiffrin DJ, Brust M, Fernig DG (2004) J Am Chem Soc 126:10076

    Article  Google Scholar 

  17. Dougan JA, Karlsson C, Smith WE, Graham D (2007) Nucleic Acids Res 35:3668

    Article  CAS  Google Scholar 

  18. Yan JF, Liu J (2008) Nanomed Nanotechnol Biol Med 4:79

    Article  CAS  Google Scholar 

  19. Opdahl A, Petrovykh DY, Kimura-Suda H, Tarlov MJ, Whitman LJ (2007) PNAS 104:9

    Article  Google Scholar 

  20. Vo-Dinh T, Kasili P, Wabuyele M (2006) Nanomed Nanotechnol Biol Med 2:22

    Article  CAS  Google Scholar 

  21. Zhang S, Metelev V, Tabatadze D, Zamecnik PC, Bogdanov A Jr (2008) PNAS 105:4156

    Article  CAS  Google Scholar 

  22. Teicher BA (2002) Tumor models in cancer research (Cancer drug discovery and development). Humana Press Inc, New Jersey

    Google Scholar 

  23. Shacham R, Avnir D, Mandler D (1999) Adv Mater 11:384

    Article  CAS  Google Scholar 

  24. Fan H, Yang K, Boye DM, Sigmon T, Malloy KJ, Xu H, López GP, Brinker CJ (2004) Science 304:567

    Article  CAS  Google Scholar 

  25. Sánchez-Loredo MG, Robledo-Cabreraa A, Groteb M (2002) Materi Chem Phys 76:279

    Article  Google Scholar 

  26. Sambrook J, Russell D (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  27. Ciccolini LS, Ayazi Shamlou P, Titchener-Hooker NJ, Ward JM, Dunnill P (2000) Biotechnol Bioeng 60:768

    Article  Google Scholar 

  28. Weller MT (1994) The application and interpretation of powder X-ray diffraction data, in inorganic materials chemistry. Oxford University Press, New York

    Google Scholar 

  29. Garratt-Reed AJ, Bell DC (2003) Energy dispersive X-ray analysis in the electron microscope. BIOS Scientific Publisher Limited, Oxford

    Google Scholar 

  30. Tanev S, Pond J, Paddon P, Tuchin VV (2006) A finite-difference time-domain model of optical phase contrast microscope imaging (Optical waveguide sensing and imaging). Springer, Netherlands

    Google Scholar 

  31. Stokes RJ, Macaskill A, Lundahl PJ, Smith WE, Faulds K, Graham D (2008) Small 3:1593

    Article  Google Scholar 

  32. Massa W (2004) Crystal structure determination. Springer, Berlin

    Book  Google Scholar 

  33. Kline R (2004) Principles and practice of structural equation modeling (Methodology in the social sciences). Guilford Publications Inc, New York

    Google Scholar 

  34. Inaga S, Osatake H, Tanaka K (1991) J Electron Microsc 40:181

    CAS  Google Scholar 

  35. Hobot J, Walker M, Newman G, Bowler P (2008) J Electron Microsc 57:67

    Article  CAS  Google Scholar 

  36. Kneipp K, Haka AS, Kneipp H, Badizadegan K, Yoshizawa N, Boone C, Shafer-Peltier KE, Motz JT, Dasari RR, Feld MS (2002) Appl Spectrosc 56:150

    Article  CAS  Google Scholar 

  37. Firkowska I, Giannona S, Rojas-Chapana JA, Luecke K, Brüstle O, Giersig M (2008) Biocompatible nanomaterials and nanodevices promising for biomedical applications, (Nanomaterials for application in medicine and biology). Springer, Netherlands

    Google Scholar 

  38. Medina-Ramírez I, Bashir S, Luo Z, Liu J (2009) Colloids Surf B Biointerfaces 73:185

    Article  Google Scholar 

Download references

Acknowledgements

The Academia Mexicana de Ciencias (AMC) y Fundación México Estados Unidos para la Ciencia (FUMEC), and the College of Arts and Sciences at Texas A&M University-Kingsville (TAMUK), Research and Development Fund (RDF) are duly acknowledged for their financial assistance. The authors are also grateful for the technical support and facility access provided by the South Texas Environmental Institute, the Department of Chemistry at TAMUK, and the Microscope and Imaging Center and Materials Characterization Facility at Texas A&M University, College Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingbo Louise Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Medina-Ramírez, I., González-García, M. & Liu, J.L. Nanostructure characterization of polymer-stabilized gold nanoparticles and nanofilms derived from green synthesis. J Mater Sci 44, 6325–6332 (2009). https://doi.org/10.1007/s10853-009-3871-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3871-3

Keywords

Navigation