Advertisement

Journal of Materials Science

, Volume 44, Issue 23, pp 6294–6301 | Cite as

Time programming of material’s properties via self-irradiation phenomena

  • Valeriy A. Luchnikov
Article
  • 69 Downloads

Abstract

We consider theoretically programming of ageing processes in materials over large time intervals via the introduction of small quantities of unstable nuclei in a material’s structure. Incorporation of minuscule amounts of radio-active species (e.g. carbon-14, tritium) in the structure of polymers, such as polytetrafluoroethylene, can be used for presetting self-decomposition of plastic products to a certain term. Radio-decay of unstable nuclei embedded in conductive polymers and dielectrics might enable the design of electrical resistors and capacitors with time-dependent characteristics. Relaxation of internal mechanical stresses, amorphization and swelling driven by self-irradiation can be used for programming configurations of mechanical systems over large terms (from years to thousands of years). Implementations of the time-programmed materials and their possible applications are discussed.

Keywords

Uranium Polyaniline Tritium Plutonium PTFE 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Gunatillake PA, Adhikari R (2003) Eur Cells Mater 5:1Google Scholar
  2. 2.
    Holland HD, Gottfried D (1955) Acta Crystall 8:291CrossRefGoogle Scholar
  3. 3.
    Ewing RC, Meldrum A, Wang LM, Weber WJ, Corrales LG (2003) Rev Miner Geochem 53:387CrossRefGoogle Scholar
  4. 4.
    Farnal I, Salje EKH (2001) J Appl Phys 89:2085ADSGoogle Scholar
  5. 5.
    Wolfer WG (2000) Los Alamos Sci 26:275Google Scholar
  6. 6.
    Allen T (2004) In: Materials of the 2004 Frédéric Joliot & Otto Hahn Summer school, available online at http://ecow.engr.wisc.edu/cgi-bin/getbig/ne/541/allentodd/reading/allenfjohtext.pdf
  7. 7.
    Weir NA (1972) J Macromol Sci A 6:125CrossRefGoogle Scholar
  8. 8.
    Wichert T, Deicher M (2001) Nucl Phys A 693:327CrossRefADSGoogle Scholar
  9. 9.
    Woods RG, Pikaev AK (1993) Applied radiation chemistry. Wiley, New York, p 381Google Scholar
  10. 10.
    Korenev S (2004) Radiat Phys Chem 71:521ADSGoogle Scholar
  11. 11.
    Moljk A, Curran SC (1954) Phys Rev 96:395CrossRefADSGoogle Scholar
  12. 12.
    Choppin GR, Liljenzin JO, Rydberg J (2001) Radiochemistry and nuclear chemistry, chap 7. Elsevier, AmsterdamGoogle Scholar
  13. 13.
    Lindner M (1953) Phys Rev 91:642CrossRefADSGoogle Scholar
  14. 14.
    Campbell IG (1963) In: Emeleus HJ, Sharpe AG (eds) Advances in inorganic chemistry and radio-chemistry, vol 5. Academic Press, New York, p 135Google Scholar
  15. 15.
    Nachman M, Cojocaru L (1962) Nature 195:694CrossRefADSGoogle Scholar
  16. 16.
    Lutz G (2002) Invited talk presented at the IEEE nuclear and space radiation effects conference phoenix, Arizona, 15–20 July 2002. Avaliable online at: http://www.hll.mpg.de/07_publication/2002/phoenix-mpi-report.pd
  17. 17.
    Güven O (2007) Radiat Phys Chem 76:1302CrossRefADSGoogle Scholar
  18. 18.
    Deshpande NG, Gudage YG, Vyas JC, Singh F, Sharma R (2008) Nucl Instrum Methods Phys Res B 266:2002CrossRefADSGoogle Scholar
  19. 19.
    Maruo YY, Sasaki S, Tamamura T (1995) Appl Opt 34:1047CrossRefADSGoogle Scholar
  20. 20.
    Landau LD, Lifshitz EM (1986) Course of theoretical physics, vol 7, sect 21. Reed Educational and Professional Publishing Ltd, OxfordGoogle Scholar
  21. 21.
    Jensen GA, Nelson DA, Melton PM (1989) US Patent 48896601989Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Institut de Science des Matériaux de MulhouseLRC 7228 CNRS & Université de Haute AlsaceMulhouseFrance

Personalised recommendations