Skip to main content
Log in

Fumed silica/polymer hybrid nanoparticles prepared by redox-initiated graft polymerization in emulsions

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Hybrid particles comprising aggregated fumed silica nanoparticles as the core and hydrophobic polymers existing around the nanoparticles were prepared by ‘grafting from’ polymerization in emulsions. The emulsion polymerization employed cetyltrimethylammonium bromide (CTAB) as a cationic surfactant and sodium dodecyl sulfate (SDS) as an anionic surfactant, respectively, to stabilize the emulsion polymerization. The polymerization was initiated by the redox reaction between ceric ion Ce(IV) and the amine groups on the surfaces of aminated fumed silica nanoparticles that were modified by 3-aminopropyltriethoxysilane. Infrared spectroscopy and thermogravimetric analysis demonstrated that both poly(methyl methacrylate) (PMMA) and polystyrene (PS) were successfully grafted onto the fumed silica surface. The type of surfactant greatly affected the grafting ratio, monomer-to-polymer conversion, and morphology of the product. When CTAB was used as the surfactant, both the grafting ratio and monomer-to-polymer conversion were lower than when SDS was used, but transmission electron microscopy and light scattering analysis indicated that most of the resultant particles were sub-100 nm hybrid nanoparticles with a non-spherical shape and particles sizes of 75–90 and 57–85 nm for PMMA and PS-grafted fumed silica, respectively. Whereas, when SDS was used as the surfactant, the particles agglomerated to form large irregular clusters or even networks, possibly due to the electrostatic attractions between SDS and Ce(IV) and/or the aminated fumed silica nanoparticles in aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Pyun J, Jia SJ, Kowalewski T, Patterson GD, Matyjaszewski K (2003) Macromolecules 36:5094

    Article  CAS  Google Scholar 

  2. Park JH, Woo S, Kim JH, Kim R, Kim J, Lee SS (2008) Mater Lett 62:3916

    Article  CAS  Google Scholar 

  3. Mori H, Seng DC, Zhang M, Muller AHE (2002) Langmuir 18:3682

    Article  CAS  Google Scholar 

  4. Jang I, Sung J, Choi H, Chin I (2005) J Mater Sci 40:3021. doi:https://doi.org/10.1007/s10853-005-2381-1

    Article  CAS  Google Scholar 

  5. Xu H, Cui LL, Tong NH, Gu HC (2006) J Am Chem Soc 128:15582

    Article  CAS  Google Scholar 

  6. Zhang JG, Coombs N, Kumacheva E (2002) J Am Chem Soc 124:14512

    Article  CAS  Google Scholar 

  7. Gittins DI, Caruso F (2001) J Phys Chem B 105:6846

    Article  CAS  Google Scholar 

  8. Guyot A, Landfester K, Schork FJ, Wang CP (2007) Prog Polym Sci 32:1439

    Article  CAS  Google Scholar 

  9. Auroy P, Auvray L, Léger L (1992) J Colloid Interface Sci 150:187

    Article  CAS  Google Scholar 

  10. Ebata K, Furukawa K, Matsumoto N (1998) J Am Chem Soc 120:7367

    Article  CAS  Google Scholar 

  11. Zhang ZK, Berns AE, Willbold S, Buitenhuis J (2007) J Colloid Interface Sci 310:446

    Article  CAS  Google Scholar 

  12. Zhang K, Chen HT, Chen X, Chen ZM, Cui ZC, Yang B (2003) Macromol Mater Eng 288:380

    Article  CAS  Google Scholar 

  13. Gu SC, Onishi J, Mine EC, Kobayashi Y, Konno M (2004) J Colloid Interface Sci 279:284

    Article  CAS  Google Scholar 

  14. Zhou J, Zhang SW, Qiao XG, Li XQ, Wu LM (2006) J Polym Sci A Polym Chem 44:3202

    Article  CAS  Google Scholar 

  15. Zhang SW, Zhou SX, Weng YM, Wu LM (2005) Langmuir 21:2124

    Article  CAS  Google Scholar 

  16. Prucker O, Rühe J (1998) Macromolecules 31:592

    Article  CAS  Google Scholar 

  17. Bachmann S, Wang HY, Albert K, Partch R (2007) J Colloid Interface Sci 309:169

    Article  CAS  Google Scholar 

  18. Kim S, Kim E, Kim S, Kim W (2005) J Colloid Interface Sci 292:93

    Article  CAS  Google Scholar 

  19. Chen XY, Randall DP, Perruchot C, Watts JF, Patten TE, von Werne T, Armes SP (2003) J Colloid Interface Sci 257:56

    Article  CAS  Google Scholar 

  20. von Werne T, Patten TE (1999) J Am Chem Soc 121:7409

    Article  CAS  Google Scholar 

  21. Perruchot C, Khan MA, Kamitisi A, Armes SP, von Werne T, Patten TE (2001) Langmuir 17:4479

    Article  CAS  Google Scholar 

  22. Wang YP, Pei XW, He ZY, Yuan K (2005) Eur Polym J 41:1326

    Article  CAS  Google Scholar 

  23. Barner L, Zwaneveld N, Perera S, Pham Y, Davis TP (2002) J Polym Sci A 40:4180

    Article  CAS  Google Scholar 

  24. Hong CY, Li X, Pan CY (2007) Eur Polym J 43:4114

    Article  CAS  Google Scholar 

  25. Parvole J, Montfort JP, Billon L (2004) Macromol Chem Phys 25:1369

    Article  CAS  Google Scholar 

  26. Bartholome C, Beyou E, Bourgeat-Lami E, Chaumont P, Zydowicz N (2003) Macromolecules 36:7946

    Article  CAS  Google Scholar 

  27. Parvole J, Billon L, Montfort JP (2002) Polym Int 51:1111

    Article  CAS  Google Scholar 

  28. Kasseh A, Ait-Kadi A, Riedl B, Pierson JF (2003) Polymer 44:1367

    Article  CAS  Google Scholar 

  29. Blomberg S, Ostberg S, Harth E, Bosman AW, van Horn B, Hawker CJ (2002) J Polym Sci A 40:1309

    Article  CAS  Google Scholar 

  30. Bamford CH, Al-Lamee KG (1994) Macromol Rapid Commun 15:379

    Article  CAS  Google Scholar 

  31. Shuckla SR, Athalye AR (1994) J Appl Polym Sci 54:279

    Article  Google Scholar 

  32. Fanta GF, Burr RC, Doane WM (1984) J Appl Polym Sci 29:4449

    Article  CAS  Google Scholar 

  33. Mino G, Kaizerman S (1958) J Polym Sci 31:242

    Article  Google Scholar 

  34. Odian G, Kho JHT (1970) J Macromol Sci Chem A 4:317

    Article  CAS  Google Scholar 

  35. Gupta KC, Sahoo S (2000) J Appl Polym Sci 76:906

    Article  CAS  Google Scholar 

  36. Ranby B, Zuchowska D (1987) Polym J 19:623

    Article  CAS  Google Scholar 

  37. Wang YP, Yuan K, Li QL, Wang LP, Gu SJ, Pei XW (2005) Mater Lett 59:1736

    Article  CAS  Google Scholar 

  38. Wang H, Peng M, Zheng J, Li P (2008) J Colloid Interface Sci 326:151

    Article  CAS  Google Scholar 

  39. Sui KY, Gu LX (2003) J Appl Polym Sci 89:1753

    Article  CAS  Google Scholar 

  40. Sarac AS (1999) Prog Polym Sci 24:1149

    Article  CAS  Google Scholar 

  41. Iler RK (1979) The chemistry of silica: solubility, polymerization, colloid and surface properties and biochemistry of silica. Wiley, New York

    Google Scholar 

  42. Ming WH, Jones FN, Fu SK (1998) Polym Bull 40:749

    Article  CAS  Google Scholar 

  43. Lane WH (1946) Ind Eng Chem Anal Ed 18:295

    Article  CAS  Google Scholar 

  44. Patra M, Sinha BK (1998) Macromol Chem Phys 199:311

    Article  CAS  Google Scholar 

  45. Bombalski L, Min K, Dong HC, Tang CB, Matyjaszewski K (2007) Macromolecules 40:7429

    Article  CAS  Google Scholar 

  46. Valente AJM, Burrows HD, Cruz SMA, Pereira RFP, Ribeiro ACF, Lobo VMM (2008) J Colloid Interface Sci 323:141

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We greatly appreciate financial support from the National Natural Science Foundation of China (NNSFC No. 20574060 and No. 50773066).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mao Peng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, M., Liao, Z., Zhu, Z. et al. Fumed silica/polymer hybrid nanoparticles prepared by redox-initiated graft polymerization in emulsions. J Mater Sci 44, 6286–6293 (2009). https://doi.org/10.1007/s10853-009-3865-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3865-1

Keywords

Navigation