Skip to main content
Log in

Wetting and interfacial behavior of Ni–Si alloy on different substrates

  • Interface Science
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Wetting of molten Ni–56 at.% Si alloy on different substrates (SiC ceramic, Ni- and Co-based superalloys, Kovar, and Mo) are performed under different experimental conditions by the sessile drop technique. Temperature, atmosphere, and substrate composition play the key roles in determining the wettability, the spreading characteristics, and the interfacial morphology of the final interfaces. The non-reactive wetting characteristics in Ni–Si/SiC system are confirmed, with a spreading rate increasing with temperature increasing. In the Ni–Si/metal systems the spreading process is determined by the competition between spreading along the substrate surface and the interfacial interactions. Excellent wettability and fast spreading are found in the Ni–Si/Co-based superalloy, Ni–Si/Kovar, and Ni–Si/Mo systems at both the temperatures (1100 and 1200 °C). These results can be used as a reference guide for joining SiC to these metallic components, or to itself, using the Ni–Si alloy as filler metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Eustathopoulos N (2005) Curr Opin Solid State Mater Sci 9:152

    Article  CAS  Google Scholar 

  2. Naidich Y (2005) Curr Opin Solid State Mater Sci 9:161

    Article  CAS  Google Scholar 

  3. Saiz E, Tomsia AP (2005) Curr Opin Solid State Mater Sci 9:167

    Article  CAS  Google Scholar 

  4. Sobczak N, Singh M, Asthana R (2005) Curr Opin Solid State Mater Sci 9:241

    Article  CAS  Google Scholar 

  5. Saiz E, Tomsia AP (2004) Nature Mater 3:903

    Article  CAS  Google Scholar 

  6. Eustathopoulos N, Nicholas MG, Drevet B (1999) Wettability at high temperature. Elsevier, Amsterdam

    Google Scholar 

  7. Passerone A, Muolo ML, Valenza F, Monteverde F, Sobczak N (2009) Acta Mater 75:356

    Article  Google Scholar 

  8. Muolo ML, Ferrera E, Novakovic R, Passerone A (2003) Scr Mater 48:191

    Article  CAS  Google Scholar 

  9. Passerone A, Muolo ML, Passerone D (2006) J Mater Sci 41:5088. doi:https://doi.org/10.1007/s10853-006-0442-8

    Article  CAS  Google Scholar 

  10. Naidich YV, Zhuravlev VS, Gab II, Kostyuk BD, Krasovskyy VP, Adamovskyy AA, Taranets NY (2008) J Eur Ceram Soc 28:717

    Article  CAS  Google Scholar 

  11. Bougiouri V, Voytovych R, Dezellus O, Eustathopoulos N (2007) J Mater Sci 42:2016. doi:https://doi.org/10.1007/s10853-006-1483-8

    Article  CAS  Google Scholar 

  12. Aluru R, Gale WF, Chitti SV, Sofyan N, Love RD, Fergus JW (2008) Mater Sci Technol 24:517

    Article  CAS  Google Scholar 

  13. Ma GF, Zhang HL, Zhang HF, Li H, Hu ZQ (2008) J Alloys Compd 464:248

    Article  CAS  Google Scholar 

  14. Xu J, Liu X, Bright MA, Hemrick JG, Sikka V, Barbero E (2008) Metall Mater Trans A 39A:1382

    Article  CAS  Google Scholar 

  15. Brochu M, Pugh M, Drew RAL (2004) Intermetallics 12:289

    Article  CAS  Google Scholar 

  16. Gauffier A, Saiz E, Tomsia AP, Hou PY (2007) J Mater Sci 46:9524. doi:https://doi.org/10.1007/s10853-007-2093-9

    Article  Google Scholar 

  17. Xiong HP, Mao W, Xie YH, Chen B, Guo WL, Li XH, Cheng YY (2007) J Mater Res 22:2727

    Article  CAS  Google Scholar 

  18. Xiong HP, Mao W, Xie YH, Chen B, Guo WL, Li XH, Cheng YY (2007) Mater Lett 61:4662

    Article  CAS  Google Scholar 

  19. Prakash P, Mohandas T, Raju PD (2005) Scr Mater 52:1169

    Article  CAS  Google Scholar 

  20. Chen B, Xiong HP, Mao W, Guo WL, Cheng YY, Li XH (2007) Acta Metall Sin 43:1181

    CAS  Google Scholar 

  21. Liu GW, Qiao GJ, Wang HJ, Yang JF, Lu TJ (2008) J Eur Ceram Soc 28:2701

    Article  CAS  Google Scholar 

  22. Liu GW, Li W, Qiao GJ, Wang HJ, Yang JF, Lu TJ (2009) J Alloys Compd 470:163

    Article  CAS  Google Scholar 

  23. Zhang CG, Qiao GJ, Jin ZH (2002) J Eur Ceram Soc 22:2181

    Article  CAS  Google Scholar 

  24. Qiao GJ, Zhang CG, Jin ZH (2003) Ceram Int 29:7

    Article  CAS  Google Scholar 

  25. Hattali ML, Valette S, Ropital F, Mesrati N, Treheux D (2009) J Mater Sci 44:3198. doi:https://doi.org/10.1007/s10853-009-3426-7

    Article  CAS  Google Scholar 

  26. Li SJ, Zhou Y, Duan HP, Qiu JH, Zhang Y (2003) J Mater Sci 38:4065. doi:https://doi.org/10.1023/A:1026135220737

    Article  CAS  Google Scholar 

  27. Shalz ML, Dalgleish BJ, Tomsia AP, Glaeser AM (1993) J Mater Sci 28:1673. doi:https://doi.org/10.1007/BF00363367

    Article  CAS  Google Scholar 

  28. Tan L, Sridharan K, Allen TR (2007) J Nucl Mater 371:171

    Article  CAS  Google Scholar 

  29. Kumar A, Rajkumar KV, Jayakumar T, Raj B, Mishra B (2006) J Nucl Mater 350:284

    Article  CAS  Google Scholar 

  30. Jones RH, Giancarli L, Hasegawa A, Katoh Y, Kohyama A, Riccardi B, Snead LL, Weber WJ (2002) J Nucl Mater 307:1057

    Article  Google Scholar 

  31. Riccardi B, Giancarli L, Hasegawa A, Katoh Y, Kohyama A, Jones RH, Snead LL (2004) J Nucl Mater 329:56

    Article  Google Scholar 

  32. Ferraris M, Salvo M, Casalegno V, Ciampichetti A, Smeacetto F, Zucchetti M (2008) J Nucl Mater 375:410

    Article  CAS  Google Scholar 

  33. Mcdermid JR, Drew RAL (1991) J Am Ceram Soc 74:1855

    Article  CAS  Google Scholar 

  34. Koltsov A, Hodaj F, Eustathopoulos N (2008) Mater Sci Eng A 495:259

    Article  Google Scholar 

  35. Riccardi B, Nannetti CA, Woltersdorf J, Pippel E, Petrisor T (2004) Int J Mater Prod Technol 20:440

    Article  CAS  Google Scholar 

  36. Riccardi B, Nannetti CA, Woltersdorf J, Pippel E, Petrisor T (2002) J Mater Sci 37:5029. doi:https://doi.org/10.1023/A:1021087632155

    Article  CAS  Google Scholar 

  37. Riccardi B, Nannetti CA, Petrisor T, Woltersdorf J, Pippel E, Libera S, Pillonni L (2004) J Nucl Mater 329:562

    Article  Google Scholar 

  38. Riccardi B, Nannetti CA, Petrisor T, Sacchetti M (2004) J Nucl Mater 307:1237

    Google Scholar 

  39. Li JK, Liu L, Wu YT, Zhang WL, Hu WB (2008) Mater Lett 62:3135

    Article  CAS  Google Scholar 

  40. Tsoga A, Ladas S, Nikolopoulos P (1997) Acta Mater 45:3515

    Article  CAS  Google Scholar 

  41. Rado C, Kalogeropoulou S, Eustathopoulos N (1999) Acta Mater 47:461

    Article  CAS  Google Scholar 

  42. Rado C, Kalogeropoulou S, Eustathopoulos N (2000) Scr Mater 42:203

    Article  CAS  Google Scholar 

  43. Mailliart O, Hodaj F, Chaumat V, Eustathopoulos N (2008) Mater Sci Eng A 495:174

    Article  Google Scholar 

  44. Kalogeropoulou S, Baud L, Eustathopoulos N (1995) Acta Metall Mater 43:907

    Article  CAS  Google Scholar 

  45. Drevet B, Kalogeropoulou S, Eustathopoulos N (1993) Acta Mater 41:3119

    Article  CAS  Google Scholar 

  46. Naidich YV, Zhuravlev V, Krasovskaya N (1998) Mater Sci Eng A 245:293

    Article  Google Scholar 

  47. Rado C, Kalogeropoulou S, Eustathopoulos N (2000) Mater Sci Eng A 276:195

    Article  Google Scholar 

  48. Li JG (1994) Mater Lett 18:291

    Article  CAS  Google Scholar 

  49. Gasse A, Chaumat G, Rado C, Eustathopoulos N (1996) J Mater Sci Lett 15:1630

    CAS  Google Scholar 

  50. Landry K, Rado C, Eustathopoulos N (1996) Metall Mater Trans A 27:3181

    Article  Google Scholar 

  51. Rado C, Eustathopoulos N (2004) Interface Sci 12:85

    Article  CAS  Google Scholar 

  52. Leon CA, Mendoza-Suarez G, Drew RAL (2006) J Mater Sci 41:5081. doi:https://doi.org/10.1007/s10853-006-0443-7

    Article  CAS  Google Scholar 

  53. Liu GW, Qiao GJ, Valenza F, Muolo ML, Passerone A (2009) Mater Sci Eng A (submitted)

  54. Liggieri L, Passerone A (1989) High Temp Technol 7:82

    Article  CAS  Google Scholar 

  55. Passerone A, Ricci E (1998) In: Möbius D, Miller R (eds) Drops and bubbles in interfacial research. Elsevier, Amsterdam

    Google Scholar 

  56. Defay R, Prigogine I, Bellemans A, Everett DH (1966) Surface tension and adsorption. Logmans, London

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank Mr. Carlo Bottino (IENI) for his skilful and passionate work with SEM and EDS and Mr. Francesco Mocellin (IENI) for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. W. Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, G.W., Valenza, F., Muolo, M.L. et al. Wetting and interfacial behavior of Ni–Si alloy on different substrates. J Mater Sci 44, 5990–5997 (2009). https://doi.org/10.1007/s10853-009-3858-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3858-0

Keywords

Navigation