Skip to main content
Log in

Effect of H2S on Fe corrosion in CO2-saturated brine

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effect of H2S at ppm level concentrations on iron corrosion in 3 wt% NaCl solutions saturated with CO2 in the temperature range of 25–85 °C is examined using electrochemical and surface science techniques. Small H2S concentrations (5 ppm) have an inhibiting effect on corrosion in the presence of CO2 at temperatures from 25 to 55 °C. At 85 °C, however, 50 ppm H2S is needed to provide significant corrosion inhibition. At higher H2S concentrations, the corrosion rate increases rapidly, while still remaining below the rate for the H2S-free solution. Characterization of the iron surfaces after corrosion was carried out using X-ray photoelectron spectroscopy and X-ray diffraction. A sulfur peak (S2p) is observed at a binding energy of 161.8 eV in all cases, attributable to disulfide \( ({\text{S}}_{2}^{2-}) \) formation. Corrosion protection in the temperature range 25–55 °C can be attributed to Fe(II) bonded to S and O. At 85 °C, protection of the iron surface is most likely due to FeS2 formation. Morphological changes on the iron surface after exposure to H2S containing solutions were observed by SEM. A thin protective film was seen after exposure to solutions containing 5 ppm H2S at 25 °C, while at 85 °C, with the addition of 50 ppm H2S to CO2-saturated brine solution, a dense protective film was formed on the iron surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kermani MB, Harrop D (1996) SPE Production Facilities 11:186

  2. Kermani MB, Morshed A (2003) Corrosion 59:659

    Article  CAS  Google Scholar 

  3. McIntyre P (2002) Corros Manag 46:19

    Google Scholar 

  4. Bonis M, Thiam P, Eurocorr 2000, Conference of the European Federation of Corrosion

  5. Schwenk W (1974) Werst Korros 25:643

    Article  CAS  Google Scholar 

  6. de Waard C, Milliams DE (1975) Corrosion 31:177

    Article  Google Scholar 

  7. Ogundele GI, White WE (1987) Corrosion 43:665

    Article  CAS  Google Scholar 

  8. Crolet JL, Bonis MR (1983) Corrosion 39:39

    Article  CAS  Google Scholar 

  9. Moiseeva LS (2005) Protection of materials, vol 41, pp 82–90

  10. Magot M, Tardy C, Caumette P, Hurtevent C, Crolet JL (1993) 10th European Corrosion Congress, pp 576–580

  11. Schmitt G (1984) Advances in CO2 corrosion, vol 1. NACE, Houston, p 1

  12. Crolet JL, Thevenot N, Nešić S (1996) CORROSION/96, paper no. 4. NACE, Houston, TX

  13. Videm K, Dugstad A (1987) CORROSION/87, paper no. 42. NACE, Houston, TX

  14. Videm K, Dugstad A (1989) Mater Perform 4:46

    Google Scholar 

  15. Moiseeva LS, Kuznetsov YI (1996) Zashch Met 32:513

    CAS  Google Scholar 

  16. Belevskii VS, Kudelin YI, Lisov SF, Timonin VA (1990) Fiz Khim Mekh Mater 6:16

    Google Scholar 

  17. De Waard C, Lotz U, Milliams DE (1991) Corrosion 47:976

    Article  Google Scholar 

  18. Moiseeva LS, Tereshina RM (1994) Zashch Met 30:410

    CAS  Google Scholar 

  19. Dunlop AK, Hassell HL, Rhodes PR (1984) Advances in CO2 corrosion, vol 1. NACE, Houston, p 52

  20. De Waard C, Lotz U, Milliams DE (1991) CORROSION/91, paper no. 577. NACE, Houston, TX

  21. Wieckowski A, Ghali E, Szklarczyk M, Sobkowski J (1983) J Electrochim Acta 28:1619

    Article  CAS  Google Scholar 

  22. Ogundele GI, White WE (1986) Corrosion 42:71

    Article  CAS  Google Scholar 

  23. French EC, Martin RL, Dougherty JA (1989) CORROSION/89, paper no. 435. NACE, Houston, TX

  24. Kurahashi H, Kurisu T, Sone I, Wada K, Nakai I (1985) Corrosion 41:211

    Article  CAS  Google Scholar 

  25. Bhargava G (2007) PhD dissertation, Princeton University

  26. Banaś J, Lelek-Borkowska U, Mazurkiewicz B, Solarski W (2007) Electrochim Acta 52:5704

    Article  Google Scholar 

  27. Ma H, Cheng X, Li G, Chen S, Quan Z, Zhao S, Niu L (2000) Corros Sci 42:1669

    Article  CAS  Google Scholar 

  28. Wu X, Ma H, Chen S, Xu Z, Sui A (1999) J Electrochem Soc 146:1847

    Article  CAS  Google Scholar 

  29. Shoesmith DW, Taylor P, Bailey MG, Owen DG (1980) J Electrochem Soc 127:1007

    Article  CAS  Google Scholar 

  30. Vedage H, Ramanarayanan TA, Mumford JD, Smith SN (1993) Corrosion 49:114

    Article  CAS  Google Scholar 

  31. Sardisco JB, Wright WB, Greco EC (1963) Corrosion 19:354

    Article  Google Scholar 

  32. Sardisco JB, Pitts RE (1965) Corrosion 21:350

    Article  CAS  Google Scholar 

  33. Sardisco JB, Pitts RE (1965) Corrosion 21:245

    Article  CAS  Google Scholar 

  34. Nešić S, Nordsveen M, Nyborg R, Stangeland AJ (2003) Corrosion 59:443

    Article  Google Scholar 

  35. Lee K-LJ, Nešić S (2005) CORROSION/05, paper no. 05630. NACE, Houston, TX

  36. Nešić S, Nordsveen M, Nyborg R, Stangeland AJ (2003) Corrosion 59:489

    Article  Google Scholar 

  37. Ramanarayanan TA, Smith SN (1990) Corrosion 46:66

    Article  CAS  Google Scholar 

  38. Mishra B, Al-Hassan S, Olson DL, Salama MM (1997) Corrosion 53:852

    Article  CAS  Google Scholar 

  39. Videm K, Kvarekvaal J, Perez T, Fitzsimons G (1998) CORROSION/98, paper no. 1. NACE, Houston, TX

  40. Kaasa B, Ostvold T (1998) CORROSION/98, paper no. 62. NACE, Houston, TX

  41. Crolet JL, Pourbaix M, Pourbaix A (1991) CORROSION/91, paper no. 22. NACE, Houston, TX

  42. Brown B, Nešić S (2005) CORROSION/05, paper no. 05625. NACE, Houston, TX

  43. Sun W, Nešić S, Papavinasam S (2008) Corrosion 64:586

    Article  CAS  Google Scholar 

  44. Brown B, Parakala SR, Nešić S (2004) CORROSION/04, paper no. 04736. NACE, Houston, TX

  45. Ikeda A, Ueda M, Mukai S (1985) Advances in CO2 corrosion, vol 2. NACE, Houston, TX, pp 1–22

    Google Scholar 

  46. Schmitt G, Engels D (2005) CORROSION/98, paper no. 149. NACE, Houston, TX

  47. Hausler RH, Gaddart HP, Advances in CO2 corrosion, vols 1 (1985) and 2 (1986). NACE, Houston, TX

  48. Videm K, Kvarekvaal J (1995) Corrosion 51:260

    Article  CAS  Google Scholar 

  49. Nešić S, Lee KJ (2002) CORROSION/02, paper no. 131. NACE, Houston, TX

  50. Yin ZF, Zhao WZ, Bai ZQ, Feng YR, Zhou WJ (2008) Electrochim Acta 53:3690

    Article  CAS  Google Scholar 

  51. Murata T, Matsuhashi R, Taniguchi T, Yamamoto K (1979) Offshore technology conference, paper no. 3507

  52. Lichti KA, Soylemezoglu S, Cunliffe KD (1981) Proceedings of the New Zealand geothermal workshop ’81, paper no. 103

  53. Smith JS, Miller JDA (1975) Br Corros J 10:136

    Article  CAS  Google Scholar 

  54. Valdes A, Case R, Ramire ZM, Rui ZA (1988) CORROSION/98, paper no. 22. NACE, Houston, TX

  55. Svenningsen G, Palencsar A, Kvarekval J (2009) CORROSION/09, paper no. 09359. NACE, Houston, TX

  56. Bazan JC, Harrison JA, Staikov G, Schmidt E, Juttner K, Lorenz WJ (1988) Electrochim Acta 34:1271

    Article  CAS  Google Scholar 

  57. Titz J, Wagner GH, Spahn H, Juttner K, Lorentz WJ (1990) Corrosion 46:221

    Article  CAS  Google Scholar 

  58. Ernst P, Earnshaw A, Wadsworth IP, Marshall GW (1997) Corros Sci 39:1329

    Article  CAS  Google Scholar 

  59. Boukamp BA (2004) Solid State Ionics 176:1959

    Article  Google Scholar 

  60. Boukamp BA (1997) Equivalent circuit. University of Twente, Twente, NL

    Google Scholar 

  61. Shirley DA (1972) Phys Rev 135:4709

    Article  Google Scholar 

  62. Heuer JK, Stubbins JF (1999) Corros Sci 41:1231

    Article  CAS  Google Scholar 

  63. Sosa E, Cabrera-Sierra R, Rincon ME, Oropeza MT, Gonzáleza I (2002) Electrochim Acta 47:1197

    Article  CAS  Google Scholar 

  64. Sosa E, Cabrera-Sierra R, Oropeza MT, Hernández F, Casillas N, Tremont R, Cabrera C, Gonzáleza I (2003) J Electrochem Soc 150:B530

    Article  CAS  Google Scholar 

  65. Bhargava G, Gouzman I, Chun CM, Ramanarayanan TA, Bernasek SL (2007) Appl Surf Sci 253:4322

    Article  CAS  Google Scholar 

  66. Wu SL, Cui ZD, He F, Bai ZQ, Zhu SL, Yang XJ (2004) Mater Lett 58:1076

    Article  CAS  Google Scholar 

  67. López DA, Schreiner WH, de Sánchez SR, Simison SN (2004) Appl Surf Sci 236:77

    Article  Google Scholar 

  68. Tang Z, Hong S, Xiao W, Taylor J (2006) Corros Sci 48:322

    Article  CAS  Google Scholar 

  69. Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer, Physical Electronics Division

  70. Thomas JE, Jones CF, Skinner WM, Smart RSC (1998) Geo Cosmchim Acta 62:1555

    Article  CAS  Google Scholar 

  71. Brundle CR, Chuang TJ, Wandelt K (1977) Surf Sci 68:459

    Article  CAS  Google Scholar 

  72. Thomas JE, Skinner WM, Smart RSC (2003) Geo Cosmchim Acta 67:831

    Article  CAS  Google Scholar 

  73. Li Y, van Santen RA, Weber Th (2008) J Solid State Chem 181:151

    Google Scholar 

  74. Kim C-Y, Escuadro AA, Bedzyk MJ (2007) Surf Sci 601:4966

    Article  CAS  Google Scholar 

  75. Prasad J, Murray E, Kelber JA (1993) Surf Sci 289:10

    Article  CAS  Google Scholar 

  76. Gruzalski GR, Zehner DM, Wendelken JF (1985) Surf Sci 159:53

    Article  Google Scholar 

Download references

Acknowledgement

This work was partially supported by the National Science Foundation, Division of Chemistry, CHE-0616457.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. L. Bernasek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abelev, E., Sellberg, J., Ramanarayanan, T.A. et al. Effect of H2S on Fe corrosion in CO2-saturated brine. J Mater Sci 44, 6167–6181 (2009). https://doi.org/10.1007/s10853-009-3854-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3854-4

Keywords

Navigation