Skip to main content

Advertisement

Log in

Antimicrobial activity of novel biocompatible wound dressings based on triblock copolymer hydrogels

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Wound infection is a common complication often resulting in delayed healing with adverse clinical and financial consequences. Current antimicrobial treatments are far from ideal, side effects can include both bacterial resistance and toxicity. As a result, a great deal of effort over the last 20 years has been spent on investigating new forms of antimicrobial dressings. Here, we report the unexpected antimicrobial activity of a relatively new biocompatible thermo-responsive PHPMA–PMPC–PHPMA triblock copolymer gelator [where PHPMA denotes poly(2-hydroxypropyl methacrylate) and PMPC denotes poly(2-(methacryloyloxy)ethyl phosphorylcholine)]. In a radial diffusion assay, a 20% w/v copolymer gel produced an inhibitory zone up to six times greater than the corresponding control against Staphylococcus aureus. Similarly, in a broth inhibition assay the same copolymer reduced bacterial growth by 45% compared with control experiments conducted in the absence of any copolymer. Moreover, addition of the copolymer to a 3D-infected skin model reduced bacterial recovery by 38% compared to that of controls over 24–48 h. This is particularly relevant since these antimicrobial triblock copolymers were recently shown to be non-toxic when exposed to a tissue-engineered skin model. This antimicrobial activity was also successfully immobilised by grafting PMPC–PHPMA diblock copolymer brushes onto silicon wafers. Our results indicate that both PMPC–PHPMA diblock and PHPMA homopolymer brushes exhibit antimicrobial activity. Our hypothesis for the mode of action is that the moderately hydrophobic PHPMA chains penetrate the bacterial membrane, causing leakage of the cell contents. In summary, these gels and surfaces offer a promising new approach to antimicrobial dressings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Farage MA, Miller KW, Elsner P, Maibach HI (2008) Aging Clin Exp Res 20:195

    Article  Google Scholar 

  2. Singer AJ, Clark RAF (1999) New Engl J Med 341:738

    Article  CAS  Google Scholar 

  3. Scheinfeld N (2005) Dermatol Online J 11(3):8

    Google Scholar 

  4. Bowler PG, Duerden BI, Amstrong DG (2001) Clin Microbiol Rev 14:244

    Article  CAS  Google Scholar 

  5. Hermans HM (2006) Am J Nurs 106:60

    Article  Google Scholar 

  6. Atiyeh BS, Costagliola M, Hayek SN, Dibo SA (2007) Burns 33:139

    Article  Google Scholar 

  7. Faulkner DM, Sutton ST, Hesford JD, Faulkner CB, Major DA, Hellewell TB, Laughon MM, Rodeheaver GT, Edlich RF (1997) Am J Emerg Med 15:20

    Article  CAS  Google Scholar 

  8. Ilker FM, Nusslein K, Tew GN, Coughlin EB (2004) J Am Chem Soc 126:15870

    Article  CAS  Google Scholar 

  9. Eren T, Som A, Rennie JR, Nelson CF, Urgina Y, Nusslein K, Coughlin EB, Tew GN (2008) Macromol Chem Phys 209:516

    Article  CAS  Google Scholar 

  10. Kuroda K, Caputo GA, DeGrado WF (2009) Chemistry 15:1123

    Article  CAS  Google Scholar 

  11. Madsen J, Armes SP, Lewis AL (2006) Macromolecules 39:7455

    Article  CAS  Google Scholar 

  12. Madsen J, Armes SP, Bertal K, Lomas H, MacNeil S, Lewis AL (2008) Biomacromolecules 9:2265

    Article  CAS  Google Scholar 

  13. Shepherd J, Douglas I, Rimmer S, Swanson L, MacNeil S (2009) Tissue Eng Part C 15(3):475

    Article  Google Scholar 

  14. Tsarevsky NV, Matyjaszewski K (2005) Macromolecules 38:3087

    Article  CAS  Google Scholar 

  15. Tsarevsky NV, Matyjaszewski K (2002) Macromolecules 35:9009

    Article  CAS  Google Scholar 

  16. Ostmark E, Harrison S, Wooley KL, Malmstrom EE (2007) Biomacromolecules 8:1138

    Article  Google Scholar 

  17. Ghosh MM, Boyce SG, Layton C, Freedlander E, MacNeil S (1997) Ann Plast Surg 39:390

    Article  CAS  Google Scholar 

  18. Schaberg DR, Culver DH, Gaynes RP (1991) Am J Med 91:72S

    Article  CAS  Google Scholar 

  19. Fleischmann W, Meyer H, Baer AV (1996) J Hosp Infect 34:107

    Article  CAS  Google Scholar 

  20. Eliott D, Kufera JA, Myers RA (2000) Am J Surg 179:361

    Article  Google Scholar 

  21. Church D, Elsayeed S, Reid O, Winston B, Lindsay R (2006) Clin Microbiol Rev 19:403

    Article  Google Scholar 

  22. Jones MV, Herd TM, Christie HJ (1989) Microbios 58:49

    CAS  Google Scholar 

  23. Brogden KA (2005) Nat Rev Microbiol 3:238

    Article  CAS  Google Scholar 

  24. Edlich RF, Schmolka IR, Prusak MP, Edgerton MT (1973) J Surg Res 14:277

    Article  CAS  Google Scholar 

  25. Rodeheaver GT, Kurtz L, Kircher BJ, Edlich RF (1980) Ann Emerg Med 11:572

    Article  Google Scholar 

  26. Rodeheaver GT, Smith SL, Thacker JG, Edgerton MT, Edlich RF (1975) Am J Surg 129:241

    Article  CAS  Google Scholar 

  27. Holder IA, Durkee P, Supp AP, Boyce ST (2003) Burns 29:445

    Article  Google Scholar 

  28. Martineau L, Dosch HM (2006) Burns 32:748

    Article  Google Scholar 

  29. Jones SA, Bowler PG, Walker M, Parsons D (2004) Wound Repair Regen 12:288

    Article  Google Scholar 

  30. Steer JA, Papini RPG, Wilson APR, McGrouther DA, Parkhouse N (1996) Burns 22:177

    Article  CAS  Google Scholar 

  31. Kuroda K, DeGrado WF (2005) J Am Chem Soc 127:4128

    Article  CAS  Google Scholar 

  32. Madsen J, Armes SP, Bertal K, MacNeil S, Lewis A (2009) Biomacromolecules (in press)

  33. Cerca N, Pier GB, Vilanova M, Oliveira R, Azeredo J (2005) Res Microbiol 156:506

    Article  CAS  Google Scholar 

  34. Tebbs SE, Elliott TSJ (1994) Eur J Clin Microbiol Infect Dis 13:111

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Algerian government for funding a PhD studentship for K. Bertal. S. P. Armes is a recipient of a 5-year Royal Society/Wolfson Research Merit Award. We thank Biocompatibles for CASE support of two PhD studentships for K. Bertal and J. Madsen, for donating the MPC monomer and also for permission to publish this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheila MacNeil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertal, K., Shepherd, J., Douglas, C.W.I. et al. Antimicrobial activity of novel biocompatible wound dressings based on triblock copolymer hydrogels. J Mater Sci 44, 6233–6246 (2009). https://doi.org/10.1007/s10853-009-3843-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3843-7

Keywords

Navigation