Journal of Materials Science

, Volume 44, Issue 22, pp 6090–6099 | Cite as

Improvement of photopolymer materials for holographic data storage



Photopolymer materials are practical materials for use as holographic recording media due to the fact that they are inexpensive, self-processing materials with the ability to record low loss, highly diffraction efficient volume holographic gratings. In general these materials absorb light of an appropriate wavelength, causing photo-polymerization of the local monomer, inducing a change in the material’s refractive index. These small changes in refractive index enable the storage of large quantities of data using holographic techniques. In an attempt to further develop the data storage capacity and quality of the information stored, i.e., resolution, in such materials, a deeper understanding of the photochemical mechanisms present during the formation of holographic gratings has become ever more crucial. From this understanding the response of an acrylamide/polyvinylalcohol based photopolymer to high spatial frequency information is improved through the addition of a chain transfer agent, i.e., sodium formate, HCOONa.


Diffraction Efficiency Primary Radical Polymerization Rate Chain Transfer Agent Sodium Formate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We acknowledge the support of Enterprise Ireland, Science Foundation Ireland and the Irish Research Council for Science, Engineering and Technology.


  1. 1.
    Dahr L, Hale A, Kurtis K, Schnoes M, Tackitt M, Wilson W, Hill A, Schilling M, Katz H, Olsen A (2000) Photopolymer recording media for high density data storage. Conference Digest, Optical Data Storage. IEEE, NJ, pp 158–160Google Scholar
  2. 2.
    Schultz S, Glytsis E, Gaylord T (2000) Appl Opt 39:1223PubMedCrossRefADSGoogle Scholar
  3. 3.
    Manivannan G, Lessard RA (1994) Trends Polym Sci 2:282Google Scholar
  4. 4.
    Syms RRA (1990) Practical volume holography. Clarendon Press, OxfordGoogle Scholar
  5. 5.
    Lawrence JR, O’Neill FT, Sheridan JT (2001) Optik 112(10):449ADSGoogle Scholar
  6. 6.
    Kelly JV, Gleeson MR, Close CE, O’Neill FT, Sheridan JT, Gallego S, Neipp C (2006) J Appl Phys 99(11):113105CrossRefADSGoogle Scholar
  7. 7.
    Gleeson MR, Sabol D, Liu S, Close CE, Kelly JV, Sheridan JT (2008) J Opt Soc Am B 25(3):396CrossRefADSGoogle Scholar
  8. 8.
    Sheridan JT, Lawrence JR (2000) J Opt Soc Am A 17(6):1108CrossRefADSGoogle Scholar
  9. 9.
    Gleeson MR, Sheridan JT (2009) J Opt A Pure Appl Opt 10:024008CrossRefADSGoogle Scholar
  10. 10.
    Odian G (1991) Principles of polymerization. Wiley, New YorkGoogle Scholar
  11. 11.
    Gleeson MR, Kelly JV, Sabol D, Close CE, Liu S, Sheridan JT (2007) J Appl Phys 102(2):023108CrossRefADSGoogle Scholar
  12. 12.
    Kelly JV, Gleeson MR, Close CE, O’Neill FT, Sheridan JT, Gallego S, Neipp C (2005) Opt Exp 13(18):6990CrossRefADSGoogle Scholar
  13. 13.
    Bamford CH, Jenkins AD, Johnston R (1959) Trans Faraday Soc 55(8):1451CrossRefGoogle Scholar
  14. 14.
    Goodner MD, Lee HR, Bowman CN (1997) Ind Eng Chem 36(4):1247CrossRefGoogle Scholar
  15. 15.
    Goodner MD, Bowman CN (1999) Macromolecules 32(20):6552CrossRefADSGoogle Scholar
  16. 16.
    Gleeson MR, Liu S, O’Duill S, Sheridan JT (2008) J Appl Phys 104(7):064917CrossRefADSGoogle Scholar
  17. 17.
    O’Brien AK, Bowman CN (2006) Macromol Theory Simul 15(2):176CrossRefGoogle Scholar
  18. 18.
    Gleeson MR, Kelly JV, Close CE, O’Neill FT, Sheridan JT (2006) J Opt Soc Am B 23(10):2079CrossRefADSGoogle Scholar
  19. 19.
    Liu S, Gleeson MR, Sheridan JT (2009) J Opt Soc Am B 26(3):1CrossRefGoogle Scholar
  20. 20.
    Manabe T, Utsumi T, Okamura S (1962) J Polym Sci 58(166):121CrossRefGoogle Scholar
  21. 21.
    Zhao GH, Mouroulis P (1994) J Mod Opt 41(10):1929CrossRefADSGoogle Scholar
  22. 22.
    Kogelnik H (1969) Bell Syst Tech J 48(9):2909Google Scholar
  23. 23.
    Kelly JV, O’Neill FT, Sheridan JT, Neipp C, Gallego S, Ortuno M (2005) J Opt Soc Am B 22(2):407CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Michael R. Gleeson
    • 1
  • Shui Liu
    • 1
  • John T. Sheridan
    • 1
  1. 1.School of Electrical, Electronic and Mechanical Engineering, UCD Communications and Optoelectronic Research Centre, SFI Strategic Research Cluster in Solar Energy Conversion, College of Engineering, Mathematical and Physical SciencesUniversity College DublinBelfield, Dublin 4Republic of Ireland

Personalised recommendations