Skip to main content
Log in

Structure–property interface correlation of fly ash–isotactic polypropylene composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Composites of isotactic semicrystalline polypropylene (PP) reinforced with fly ash (FA) particles (particle size 5–60 μm) were prepared by injection moulding at 210 °C incorporating 20, 45 and 60% by weight of fly ash. Tensile tests were carried out at 25, 50 and 70 °C. WAXRD, DSC and SEM studies were also undertaken. Modulus of elasticity of all composites at all temperatures was higher than that of the corresponding PP samples—the gain ranged between 10 and 60%. The strength of the composites had a mixed trend. At 25 °C, the composites suffered significant loss in strength, as much as 47%, whereas, at 50 and 70 °C, there was up to 15% gain in strength. Strain to failure of the composite samples ranged from as low as 6% at 25 °C to over 50% at 70 °C, coinciding with increase of Pukanszky parameter from 1.5 to 4.1. WAXRD and DSC tests confirm that FA is nucleator of β-crystalline phase the amount of which increases to a maximum of 11% with increasing FA. SEM studies indicated that the polymer had a distinctly high lamellar ductility and showed interfacial interaction with FA in 20% FA composites at 50 and 70 °C. The –OH group on the surface of FA appears responsible for the formation of interfacial interaction with PP chain. Notched Charpy tests showed a maximum gain of 58% impact energy for the composite with 45% FA, tested at 70 °C over that of pure PP at 25 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Iyer RS, Scott JA (2001) Resour Conserv Recyl 31:217

    Article  Google Scholar 

  2. Gomes S, Francois M, Abdelmoula M, Refait P, Pellissier C, Evrard O (1999) Cem Concr Res 29:1705

    Article  CAS  Google Scholar 

  3. Demanet CM (1995) Appl Surf Sci 89:97

    Article  CAS  Google Scholar 

  4. Kutchko BG, Kim AG (2006) Fuel 85:2537

    Article  CAS  Google Scholar 

  5. Ward CR, French D (2006) Fuel 85:2268

    Article  CAS  Google Scholar 

  6. McDowell RW (2005) Aust J Soil Res 43:853

    Article  CAS  Google Scholar 

  7. Gorninski JP, Molin DCD, Kazmierczak CS (2004) Cem Concr Res 34:2091

    Article  CAS  Google Scholar 

  8. Kojima Y, Usuki A, Kawasumi M, Fukushima Y, Okada A, Kurauchi T, Kamigaito O (1993) J Mater Res 8:1179

    Article  Google Scholar 

  9. Guhanathan S, Sarojadevi M (2004) Compos Interface 11(1):43

    Article  CAS  Google Scholar 

  10. Gupta N, Brar BS, Woldesenbet E (2001) Bull Mater Sci 24(2):219

    Article  CAS  Google Scholar 

  11. Wong KWY, Truss RW (1994) Comp Sci Technol 52:361

    Article  CAS  Google Scholar 

  12. Wang M, Shen Z, Cai C, Ma S, Xing Y (2004) J Appl Polym Sci 92:126

    Article  CAS  Google Scholar 

  13. Jarvela PA, Jarvela PK (1996) J Mater Sci 31:3853. doi:https://doi.org/10.1007/BF00352802

    Article  CAS  Google Scholar 

  14. Huang X, Hwang JY, Gillis JM (2003) J Miner Mater Charact Eng 2(1):11

    Google Scholar 

  15. Okamoto M, Nam PH, Maiti P, Kotaka T, Hasegawa N, Usuki A (2001) Nano Lett 1(6):295

    Article  CAS  Google Scholar 

  16. Tjong SC, Li RKY, Cheung T (1997) Polym Eng Sci 37(1):166

    Article  CAS  Google Scholar 

  17. Bigg DM (1987) Polym Compos 8(2):115

    Article  CAS  Google Scholar 

  18. Li JX, Silverstein M, Hiltner A, Baer E (1994) J Appl Polym Sci 52:255

    Article  CAS  Google Scholar 

  19. Brydson JA (2001) Plastics materials. Butterworth-Heinemann, Oxford, Boston, Elsiver Science. ISBN: 0750618647

  20. Lotz B, Wittmann JC, Lovinger JA (1996) Polymer 37(22):4979

    Article  CAS  Google Scholar 

  21. Liu J, Wei X, Guo Q (1990) J Appl Polym Sci 41:2829

    Article  CAS  Google Scholar 

  22. Ferrage E, Martin F, Boudet A, Petit S, Fourty G, Jouffet F, Micoud P, Parseval PD, Salvi S, Courgerette C, Ferret J, Saint-Gerard Y, Buratto S, Fortune JP (2002) J Mater Sci 37:1561. doi:https://doi.org/10.1023/A:1014929121367

    Article  CAS  Google Scholar 

  23. Mucha M, Krolikowski Z (2003) J Therm Anal Calorim 74:549

    Article  CAS  Google Scholar 

  24. Chen J, Li X, Wu C (2007) Polym J 39(7):722

    Article  CAS  Google Scholar 

  25. Zhang QX, Yu ZZ, Xie XL, Mai YW (2004) Polymer 45:5985

    Article  CAS  Google Scholar 

  26. Kim B, Lee SH, Lee D, Ha B, Park J, Char K (2004) Ind Eng Chem Res 43:6082

    Article  CAS  Google Scholar 

  27. Tang J, Wang Y, Liu HY, Belfiore LA (2004) Polymer 45:2081

    Article  CAS  Google Scholar 

  28. Gaceva GB, Janevsky A, Mader E (2001) Polymer 42:4409

    Article  Google Scholar 

  29. Rong MZ, Zhang MQ, Pan SL, Lehmann B, Friedrich K (2004) Polym Int 53:176

  30. Valentini L, Biagiotti J, Kenny JM, Santucci S (2003) J Appl Polym Sci 87:708

    Article  CAS  Google Scholar 

  31. Xie XL, Li RKY, Jong SC, Mai YW (2002) Polym Compos 23(3):319

    Article  CAS  Google Scholar 

  32. Yuan Q, Misra RDK (2006) Polymer 47:4421

    Article  CAS  Google Scholar 

  33. Leong YW, Bakar MBA, Ishak ZAM, Ariffin A, Pukanszky B (2004) J Appl Polym Sci 91:3315

    Article  CAS  Google Scholar 

  34. Mueller R, Kammler HK, Wegner K, Pratsinis SE (2003) Langmuir 19:160

    Article  CAS  Google Scholar 

  35. Paparazzo E (1996) Surf Interface Anal 24:729

    Article  CAS  Google Scholar 

  36. Nielsen LE (1966) J Appl Polym Sci 10:97

    Article  CAS  Google Scholar 

  37. Tsai SW (1988) Composite design. Think Composites Press, Dayton, OH

    Google Scholar 

  38. Kinloch AJ (1987) Rubber-toughened plastics. American Chemical Society, Washington, DC, pp 67–91. ISBN: 0841214883

  39. Bandyopadhyay S, Brown HR (1981) Polymer 22:245

    Article  CAS  Google Scholar 

  40. Anandhan S, De PP, Bhowmick AK, De SK (2003) J Appl Polym Sci 90:2348

    Article  CAS  Google Scholar 

  41. Ghosh A, Rajeev RS, Dey SK, Sharp W, Bandyopadhyay S (2006) J Elastomers Plast 38:119

    Article  CAS  Google Scholar 

  42. Weon JI, Sue HJ (2006) J Mater Sci 41:2219. doi:https://doi.org/10.1007/s10853-006-7171-x

    Article  Google Scholar 

  43. Spanoudakis J, Young RJ (1984) J Mater Sci 19:487. doi:https://doi.org/10.1007/BF00553571

    Article  CAS  Google Scholar 

  44. Tan LS, Mchugh AJ (1996) J Mater Sci 31:3701. doi:https://doi.org/10.1007/BF00352783

    Article  CAS  Google Scholar 

  45. Bandyopadhyay S (1990) Mater Sci Eng A 125:157

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the help and cooperation of Dr. Norman Booth, Department of Chemistry, Materials and Forensic Science, University of Technology, Sydney, NSW 2000, Australia in providing Instron for tensile strength at elevated temperature. The authors are also grateful to Australian Research Council for the financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sri Bandyopadhyay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nath, D.C.D., Bandyopadhyay, S., Yu, A. et al. Structure–property interface correlation of fly ash–isotactic polypropylene composites. J Mater Sci 44, 6078–6089 (2009). https://doi.org/10.1007/s10853-009-3839-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3839-3

Keywords

Navigation