Advertisement

Journal of Materials Science

, Volume 44, Issue 22, pp 6028–6034 | Cite as

Facile fabrication of NiO x H y films and their unique electrochromic properties

  • Fang Liu
  • Xin Zhang
  • Kang-Wei Zhu
  • Yu Song
  • Zhen-Hua Shi
  • Bo-Xue Feng
Article

Abstract

The electrochromic (EC) NiO x H y films were fabricated through a facile sol–gel method. The formation of high quality NiO x H y films came from adding the xerogel back into the sol and prolonging the annealing time at gradually increasing temperature up to 250 °C. Scanning electron microscopy and atomic force microscopy characterizations indicated films were compact, homogenous, and smooth. Glance angle X-ray diffraction investigation testified NiO x H y films were of poor crystallization. The Fourier transform infrared, and thermogravimetry and differential thermal analysis showed that films contained the mixture of NiO, Ni(OH)2, NiOOH, water, and organic substance. With the increasing of the xerogel ratio, the optical absorbance and reflectance of films had larger differences between the colored and bleached state, respectively. The film with the xerogel ratio of 1:5 showed excellent EC properties with a transmittance contrast as high as 60.88% at λ = 560 nm, which was higher than other sol–gel nickel oxide films reported.

Keywords

Differential Thermal Analysis Oxygen Evolution Reaction Colored State Electrochromic Property Bleached State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

We appreciate the financial supports of the National science Foundation of China (Grant No. 60576013, 60536010 and J0630313).

References

  1. 1.
    Granqvist CG (1995) Handbook of inorganic electrochromic materials. Elsevier, AmsterdamGoogle Scholar
  2. 2.
    Garcia-Miquel JL, Zhang Q, Allen SJ, Rougier A, Blyr A, Davies HO, Jones AC, Leedham TJ, Williams PA, Impey SA (2003) Thin Solid Films 424:165CrossRefADSGoogle Scholar
  3. 3.
    Ozkan Zayima E, Turhan I, Tepehan FZ, Ozer N (2008) Sol Energy Mater Sol Cells 92:164CrossRefGoogle Scholar
  4. 4.
    Granqvist CG (2006) Nature 5:89CrossRefGoogle Scholar
  5. 5.
    Liu H-R, Zheng W-M, Yan X, Feng B-X (2008) J Alloys Compd 462:356CrossRefGoogle Scholar
  6. 6.
    MiIIer EL, Rocheleau RE (1997) J Electrochem Soc 144:1995CrossRefGoogle Scholar
  7. 7.
    Bouessay I, Rougier A, Tarascon J-M (2004) J Electrochem Soc 151:H145CrossRefGoogle Scholar
  8. 8.
    Wu M-S, Yang C-H (2007) Appl Phys Lett 91:033109CrossRefADSGoogle Scholar
  9. 9.
    Xia XH, Tua JP, Zhang J, Wang XL, Zhang WK, Huang H (2008) Electrochim Acta 53:5721CrossRefGoogle Scholar
  10. 10.
    Sharma PK, Fantini MCA, Gorenstein A (1998) Solid State Ionics 113–115:457CrossRefGoogle Scholar
  11. 11.
    Moser FH, Lyman NR (1990) US Patent No. 4959247, 25 SeptemberGoogle Scholar
  12. 12.
    Liu F, Zhou M, Zhong Y-Y, Song Y, Li J-R, Yang W-F, Feng B-X (2008) J Funct Mater 39:1835Google Scholar
  13. 13.
    Xia XH, Tu JP, Zhang J, Wang XL, Zhang WK, Huang H (2008) Sol Energy Mater Sol Cells 92:628CrossRefGoogle Scholar
  14. 14.
    Lin S-H, Chen F-R, Kai J-J (2008) Appl Surf Sci 254:2017CrossRefADSGoogle Scholar
  15. 15.
    Ryu HW, Choi GP, Lee WS, Park JS (2004) J Mater Sci 39:4375. doi: 10.1023/B:JMSC.0000033431.52659.e5 CrossRefADSGoogle Scholar
  16. 16.
    Liu X-M, Zhang X-G, Fu S-Y (2006) Mater Res Bull 41:620CrossRefGoogle Scholar
  17. 17.
    Cerc Korošec R, Šauta Ogorevc J, Draškovič P, Dražić G, Bukovec P (2008) Thin Solid Films 516:8264CrossRefADSGoogle Scholar
  18. 18.
    Šurca A, Orel B, Pihlar B, Bukovec P (1996) J Electroanal Chem 40:83Google Scholar
  19. 19.
    Cordoba-Torresi SI, Hugot-Le Goff A, Joiret S (1991) J Electrochem Soc 138:1554CrossRefGoogle Scholar
  20. 20.
    Cerc Korošec R, Bukovec P (2004) Thermochim Acta 410:65CrossRefGoogle Scholar
  21. 21.
    Cheng J, Cao G-P, Yang Y-S (2006) J Power Sources 159:734CrossRefGoogle Scholar
  22. 22.
    Cerc Korošec R, Bukovec P, Pihlar B, Padežnik Gomilšek J (2003) Thermochim Acta 402:57Google Scholar
  23. 23.
    Cerc Korošec R, Bukovec P (2006) Acta Chim Slov 53:136Google Scholar
  24. 24.
    Wendlandt WW (1964) Thermal methods of analysis. Interscience Publishers, New York, p 17Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Fang Liu
    • 1
  • Xin Zhang
    • 1
  • Kang-Wei Zhu
    • 1
  • Yu Song
    • 1
  • Zhen-Hua Shi
    • 1
  • Bo-Xue Feng
    • 1
  1. 1.Key Laboratory Magnetism and Magnetic Material of EducationLanzhou UniversityLanzhouPeople’s Republic of China

Personalised recommendations