Advertisement

Journal of Materials Science

, Volume 44, Issue 20, pp 5688–5691 | Cite as

Preparation of polycrystalline bulk Mg2Si by using NaSi

  • Takahiro Yamada
  • Yusuke Oishi
  • Haruhiko Morito
  • Hisanori Yamane
Letter

Recently, thermoelectric materials have been attracting attention in the field of effective energy saving by utilization of waste heat. Mg2Si and Mg2Si-based materials are expected to be used as an alternative to PbTe for application in thermoelectric devices in the temperature range from 500 to 800 K because of their high thermoelectric properties. Moreover, Mg2Si has the lowest density, i.e., 2.0 g/cm3, among thermoelectric materials and its constituent elements, i.e., Mg and Si, are abundant and nontoxic [1, 2, 3, 4]. According to the Mg–Si phase diagram presented by Okamoto et al. [5], Mg2Si is the only binary phase of this system and melts at 1354 K. Because the melting point of Mg2Si is close to the boiling point of Mg (1363 K) and the vaporization of Mg from the Mg–Si melt is significant around this temperature, preparation of Mg2Si polycrystalline bulk and single crystals from the Mg–Si melt has been performed under 0.2–0.4 MPa of inert gas to suppress Mg vaporization [6, 7, 8,...

Keywords

Spark Plasma Sinter Thermoelectric Property PbTe Seebeck Coefficient Compact Body 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

This work was supported in part by a Grant-in-Aid for Young Scientists (A) (20685015) from the Ministry of Education, Culture, Sports, Science and Technology.

References

  1. 1.
    Zaitsev VK, Fedrov MI, Eremin IS, Gurieca EA (2006) In: Rowe DM (ed) Thermoelectrics handbook. CRC Press Inc., FloridaGoogle Scholar
  2. 2.
    Nolas GS, Sharp J, GOldsmid HJ (eds) (2000) Thermoelectrics. Springer, BerlinGoogle Scholar
  3. 3.
    Zaitsev VK, Fedorov MI, Gurieva EA, Eremin IS, Konstantinov PP, Samunin AY, Vedernikov MV (2006) Phys Rev B 74:045207CrossRefADSGoogle Scholar
  4. 4.
    Zhang Q, He J, Zhu TJ, Zhang SN, Zhao XB, Tritt TM (2008) Appl Phys Lett 93:102109CrossRefADSGoogle Scholar
  5. 5.
    Okamoto H (2007) J Phase Equilib Diffus 28:229CrossRefGoogle Scholar
  6. 6.
    LaBotz RJ, Mason DRT (1963) J Electrochem Soc 110:127CrossRefGoogle Scholar
  7. 7.
    Noda Y, Kon H, Fukuwara Y, Otsuka N, Nishida IA, Masumoto K (1992) Mater Trans JIM 33:845Google Scholar
  8. 8.
    Yoshinaga M, Iida T, Noda M, Endo T, Takahashi Y (2004) Thin Solid Films 461:86CrossRefADSGoogle Scholar
  9. 9.
    Tamura D, Nagai R, Sugimoto K, Udono H, Kikuma I, Tajima H, Ohsugi IJ (2007) Thin Solid Films 515:8272CrossRefADSGoogle Scholar
  10. 10.
    Akasaka M, Iida T, Nemoto T, Soga J, Makino K, Fukano M, Takahashi Y (2007) J Cryst Growth 304:196CrossRefADSGoogle Scholar
  11. 11.
    Kajiwara T, Shida K, Sugihara S, Ohmori M, Hirai T (1997) In: Proceedings of the 16th international conference on thermoelectrics (ICT’97), IEEE, p 275Google Scholar
  12. 12.
    Tani J, Kido H (2005) Physica B 364:218CrossRefADSGoogle Scholar
  13. 13.
    Tani J, Kido H (2007) Intermetallics 15:1202CrossRefGoogle Scholar
  14. 14.
    Zhang Q, Zhao XB, Yin H, Zhu TJ (2008) J Alloys Comp 464:9CrossRefGoogle Scholar
  15. 15.
    Sugiyama A, Kobayashi K, Ozaki K, Nishio T, Matsumoto A (1998) J Jpn Soc Powder Powder Metall 45:952Google Scholar
  16. 16.
    Kawamura F, Yamane H, Yamada T, Yin S, Sato T (2007) J Ceram Soc Jpn 115:74CrossRefGoogle Scholar
  17. 17.
    Kawamura F, Yamane H, Yamada T, Yin S, Sato T (2008) J Am Ceram Soc 91:51CrossRefGoogle Scholar
  18. 18.
    Yamada T, Yamane H (2007) Chem Mater 19:6047CrossRefGoogle Scholar
  19. 19.
    Yamada T, Yamane H (2009) Jpn J Appl Phys (in press)Google Scholar
  20. 20.
    Morito H, Yamada T, Ikeda T, Yamane H (2009) J Alloys Comp 480:723CrossRefGoogle Scholar
  21. 21.
    Witte J, Schnering HG (1964) Z Anorg Allg Chem 327:260CrossRefGoogle Scholar
  22. 22.
    Mathewson CH (1905) Z Anorg Chem 48:191CrossRefGoogle Scholar
  23. 23.
    Niwa Y, Todaka Y, Umemoto M, Yamana K, Kinoshita K, Tanizawa M (2008) J Jpn Inst Met 70:693CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Takahiro Yamada
    • 1
  • Yusuke Oishi
    • 1
  • Haruhiko Morito
    • 1
  • Hisanori Yamane
    • 1
  1. 1.Institute of Multidisciplinary for Advanced MaterialTohoku UniversitySendaiJapan

Personalised recommendations