Journal of Materials Science

, Volume 44, Issue 18, pp 4993–4998 | Cite as

Dielectric properties and microstructure of TiO2 modified (ZnMg)TiO3 microwave ceramics with CaO–B2O3–SiO2

  • Bo Li
  • Shuren Zhang
  • Ying Yuan
  • Xiaohua Zhou
  • Longcheng Xiang


The low-fired (ZnMg)TiO3–TiO2 (ZMT–TiO2) microwave ceramics using low melting point CaO–B2O3–SiO2 as sintering aids have been developed. The influences of Mg substituted fraction on the crystal structure and microwave properties of (Zn1−x Mg x )TiO3 were investigated. The result reveals that the sufficient amount of Mg (x ≥ 0.3) could inhibit the decomposition of ZnTiO3 effectively, and form the single-phase (ZnMg)TiO3 at higher sintering temperatures. Due to the compensating effect of rutile TiO2f = 450 ppm/°C), the temperature coefficient of resonant frequency (τf) for (Zn0.65Mg0.35)TiO3–0.15TiO2 with biphasic structure was adjusted to near zero value. Further, CaO–B2O3–SiO2 addition could reduce the sintering temperature from 1150 to 950 °C, and significantly improve the sinterability and microwave properties of ZMT–TiO2 ceramics, which is attributed to the formation of liquid phases during the sintering process observed by SEM. The (Zn0.65Mg0.35)TiO3–0.15TiO2 dielectrics with 1 wt% CaO–B2O3–SiO2 sintered at 950 °C exhibited the optimal microwave properties: ε ≈ 25, Q × f ≈ 47,000 GHz, and τf ≈ ± 10 ppm/°C.


TiO2 B2O3 Microwave Dielectric Property Microwave Property TiO3 Ceramic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Sebastian MT (2008) Dielectric materials for wireless communication. ElsevierGoogle Scholar
  2. 2.
    Sebastian MT, Jantunen H (2008) Int Mater Rev 53(2):57CrossRefGoogle Scholar
  3. 3.
    Golovchanshi A, Kim HT, Kim YH (1998) J Korean Phys Soc 32(2):S1167Google Scholar
  4. 4.
    Kim HT, Kim SH, Nahm S, Byun JD (1999) J Am Ceram Soc 82(11):3043Google Scholar
  5. 5.
    Yamaguchi O, Morimi M, Kawabata H, Shimizu K (1987) J Am Ceram Soc 70(5):C97Google Scholar
  6. 6.
    Kim HT, Nahm S, Byun JD, Kim Y (1999) J Am Ceram Soc 82(12):3476CrossRefGoogle Scholar
  7. 7.
    Hsieh M-L, Chen L-S, Wang S-M, Sun C-H, Weng M-H, Houng M-P, Fu S-L (2005) Jpn J Appl Phys 44(7A):5045CrossRefADSGoogle Scholar
  8. 8.
    Wang Y-R, Wang S-F, Lin Y-M (2005) Ceram Int 31:905CrossRefGoogle Scholar
  9. 9.
    Chaouchi A, d’ Astorg S, Marinel S, Aliouat M (2007) Mater Chem Phys 103:106–111CrossRefGoogle Scholar
  10. 10.
    Lee Y-C, Lee W-H (2005) Jpn J Appl Phys 44(4A):1838CrossRefADSGoogle Scholar
  11. 11.
    Liu X, Gao F, Zhao L, Tian C (2007) J Alloys Compd 436:285CrossRefGoogle Scholar
  12. 12.
    Chaouchi A, Aliouat M, Marinel S, d’ Astorg S, Bourahla H (2007) Ceram Int 33:245CrossRefGoogle Scholar
  13. 13.
    Lee Y-C, Lee W-H, Shiao F-T (2004) Jpn J Appl Phys 43(11A):7596CrossRefADSGoogle Scholar
  14. 14.
    Zhang QL, Yang H, Zou JL, Wang HP (2005) Mater Lett 59:880CrossRefGoogle Scholar
  15. 15.
    Chai Y-L, Chang Y-S, Hsiao Y-J, Lian Y-C (2008) Mater Res Bull 43:257CrossRefGoogle Scholar
  16. 16.
    Templeton A, Wang X, Penn SJ, Webb SJ, Cohen LF, Alford NM (2000) J Am Ceram Soc 83(1):95CrossRefGoogle Scholar
  17. 17.
    Zhou X, Li B, Zhang S, Ning H (2009) J Mater Sci: Mater Electron 20:262CrossRefGoogle Scholar
  18. 18.
    Wakino K (1989) Ferroelectric 91:69Google Scholar
  19. 19.
    Shin H, Shin H-K, Jung HS, Cho S-Y, Hong KS (2005) Mater Res Bull 40(11):2021CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Bo Li
    • 1
  • Shuren Zhang
    • 1
  • Ying Yuan
    • 1
  • Xiaohua Zhou
    • 1
  • Longcheng Xiang
    • 1
  1. 1.State Key Laboratory of Electronic Thin Films and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengduPeople’s Republic of China

Personalised recommendations