Journal of Materials Science

, Volume 44, Issue 18, pp 4911–4918 | Cite as

Weibull modulus of nano-hardness and elastic modulus of hydroxyapatite coating

  • Arjun Dey
  • Anoop K. Mukhopadhyay
  • S. Gangadharan
  • Mithilesh K. Sinha
  • Debabrata Basu


Here we report the microstructural dependence of nano-hardness (H) and elastic modulus (E) of microplasma sprayed (MIPS) 230 μm thick highly porous, heterogeneous hydroxyapatite (HAP) coating on SS316L. The nano-hardness and Young’s modulus data were measured on polished plan section (PS) of the coating by the nanoindentation technique with a Berkovich indenter. The characteristic values of nano-hardness and Young’s modulus were calculated through the application of Weibull statistics. Both nano-hardness and the Young’s modulus data showed an apparent indentation size effect. In addition, there was an increasing trend of Weibull moduli values for both the nano-hardness and the Young’s modulus data of the MIPS-HAP coating as the indentation load was enhanced from 10 to 1,000 mN. An attempt was made in the present work, to provide a qualitative model that can explain such behavior.


Indentation Volume Indentation Load Weibull Modulus Indentation Size Effect Strain Gradient Plasticity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are grateful to Director, Central Glass and Ceramic Research Institute (CGCRI), Kolkata for his kind permission to publish this paper and to Dr. D. K. Bhattacharya, Head, Analytical Facility Division of CGCRI for his kind encouragements during the course of this work. One of the authors (A.D.) also sincerely acknowledges the support and encouragements received from Prof. N. R. Bandyopadhyay of the School of Materials Science and Engineering, Bengal Engineering and Science University (BESU), Shibpur. The authors also appreciate the infrastructural support received from all colleagues and particularly those received from the colleagues of the Scanning Electron Microscopy Section, Mechanical Test Section, and Bio-Ceramics and Coating Division at CGCRI. Finally, the authors gratefully acknowledge financial support received from DST-SERC (Project No: GAP 0216) and CSIR (Network Project TAREMAC No: NWP 0027).


  1. 1.
    Dey A, Mukhopadhyay AK, Gangadharan S, Sinha MK, Basu D (2009) Mater Manuf Process 24(12)Google Scholar
  2. 2.
    Dey A, Mukhopadhyay AK, Gangadharan S, Sinha MK, Basu D, Bandyopadhyay NR (2009) Ceram Int 35:2295CrossRefGoogle Scholar
  3. 3.
    Dey A, Mukhopadhyay AK, Gangadharan S, Sinha MK, Basu D (2008) In: Raghu Prasad BK, Narasimhan R (eds) Proceedings of interquadrennial conference of international congress on fracture, August 3–7, 2008, Bangalore, India. I. K. International Publishing House Pvt. Ltd., pp 311–313Google Scholar
  4. 4.
    Dey A, Mukhopadhyay AK, Gangadharan S, Sinha MK, Basu D (2008) In: Raghu Prasad BK, Narasimhan R (eds) Proceedings of interquadrennial conference of international congress on fracture, August 3–7, 2008, Bangalore, India. I. K. International Publishing House Pvt. Ltd., pp 217–219Google Scholar
  5. 5.
    Wen J, Leng Y, Chen J, Zhang C (2000) Biomaterials 21:1339PubMedCrossRefGoogle Scholar
  6. 6.
    Zhang C, Leng Y, Chen J (2001) Biomaterials 22:1357PubMedCrossRefGoogle Scholar
  7. 7.
    Khor KA, Li H, Cheang P (2003) Biomaterials 24:769PubMedCrossRefGoogle Scholar
  8. 8.
    Cheng GJ, Pirzada D, Cai M, Mohanty P, Bandyopadhyay A (2005) Mater Sci Eng C 25:541CrossRefGoogle Scholar
  9. 9.
    Chen Y, Zhang YQ, Zhang TH, Gan CH, Zheng CY, Yu G (2006) Carbon 44:37CrossRefGoogle Scholar
  10. 10.
    Nieh TG, Jankowski AF, Koike J (2001) J Mater Res 16:3238CrossRefADSGoogle Scholar
  11. 11.
    Nieh TG, Choi BW, Jankowski AF (2001) Minerals, Metals and Materials Society Annual Meeting and ExhibitionGoogle Scholar
  12. 12.
    Arias JL, Mayor MB, Pou J, Leng Y, Leon B, Amora MP (2003) Biomaterials 24:3403PubMedCrossRefGoogle Scholar
  13. 13.
    Gross KA, Samandari SS (2007) J Aus Ceram Soc 43:98Google Scholar
  14. 14.
    Zhang S, Wang YS, Zeng XT, Khor KA, Weng W, Sun DE (2008) Thin Solid Films 516:5162CrossRefADSGoogle Scholar
  15. 15.
    Saber-Samandari S, Gross KA (2009) Surf Coat Tech (article in press). doi: 10.1016/j.surfcoat.2009.05.033
  16. 16.
    Pelletier H, Nelea V, Mille P, Muller D (2004) J Mater Sci 39:3605. doi: 10.1023/B:JMSC.0000030712.81704.b0 CrossRefADSGoogle Scholar
  17. 17.
    Zhou H, Li F, He B, Wang J, Sun B (2007) Surf Coat Tech 201:7360CrossRefGoogle Scholar
  18. 18.
    Basu D, Funke C, Steinbrech RW (1999) J Mater Res 14:4643CrossRefADSGoogle Scholar
  19. 19.
    Guo S, Kagawa Y (2006) Ceram Int 32:263CrossRefGoogle Scholar
  20. 20.
    Oliver WC, Pharr GM (1992) J Mater Res 7:1564CrossRefADSGoogle Scholar
  21. 21.
    Ma Q, Clarke DR (1995) J Mater Res 10:853CrossRefADSGoogle Scholar
  22. 22.
    Bull SJ, Pag TF, Yoffe EH (1989) Phil Mag Lett 59:281CrossRefADSGoogle Scholar
  23. 23.
    Mukhopadhyay NK, Paufler P (2006) Int Mater Rev 51:209CrossRefGoogle Scholar
  24. 24.
    Mukhopadhyay NK, Bhatt J, Pramanik AK, Murty BS, Paufler P (2004) J Mater Sci 39:5155. doi: 10.1023/B:JMSC.0000039202.27103.4c CrossRefADSGoogle Scholar
  25. 25.
    Bernhardt EO (1941) Z Metallkd 33:135Google Scholar
  26. 26.
    Nix WD, Gao H (1998) J Mech Phys Solid 46:411MATHCrossRefADSGoogle Scholar
  27. 27.
    Horstemeyer MF, Baskes MI, Plimpton SJ (2001) Acta Mater 49:4363CrossRefGoogle Scholar
  28. 28.
    Iost A, Bigot R (1996) J Mater Sci 31:3573. doi: 10.1007/BF00360764 Google Scholar
  29. 29.
    Li H, Gosh A, Han YH, Bradt RC (1993) J Mater Res 8:1028CrossRefADSGoogle Scholar
  30. 30.
    Swain MV, Wittling M (1996) In: Bradt RC et al (eds) Fracture mechanics of ceramics, vol 11. Plenum Press, New York, p 379Google Scholar
  31. 31.
    Gong J, Guan Z (2001) Mater Lett 47:140CrossRefGoogle Scholar
  32. 32.
    Gao YX, Fan H (2002) J Mater Sci 37:4493. doi: 10.1023/A:1020662215932 CrossRefGoogle Scholar
  33. 33.
    Paternoster C, Fabrizi A, Cecchini R, Mehtedi ME, Choquet P (2008) J Mater Sci 43:3377. doi: 10.1007/s10853-007-2392-1 CrossRefADSGoogle Scholar
  34. 34.
    Hays C, Kendall EG (1973) Metallography 6:275CrossRefGoogle Scholar
  35. 35.
    Li H, Bradt RC (1991) Mater Sci Eng A 142:51CrossRefGoogle Scholar
  36. 36.
    Peng Z, Gong J, Miao H (2004) J Eur Ceram Soc 24:2193CrossRefGoogle Scholar
  37. 37.
    Taylor GI (1934) Proc R Soc London A 145:362CrossRefADSGoogle Scholar
  38. 38.
    Taylor GI (1938) J Inst Metal 62:307Google Scholar
  39. 39.
    Kumar RR, Wang M (2002) Mater Sci Eng A 338:230CrossRefGoogle Scholar
  40. 40.
    Huang Y, Zhang F, Hwang KC, Nix WD, Pharr GM, Feng G (2006) J Mech Phys Sol 54:1668MATHCrossRefADSGoogle Scholar
  41. 41.
    Mukhopadhyay AK, Phani KK (1998) J Mater Sci 33:69. doi: 10.1023/A:1004385327370 CrossRefGoogle Scholar
  42. 42.
    Rossi RC (1968) J Am Ceram Soc 51:433CrossRefGoogle Scholar
  43. 43.
    Sneddon IN (1965) Int J Eng Sci 3:47MATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Doerner MF, Nix WD (1986) J Mater Res 1:601CrossRefADSGoogle Scholar
  45. 45.
    Field JS, Swain MV (1993) J Mater Res 8:297CrossRefADSGoogle Scholar
  46. 46.
    Malzbender J, Steinbrech RW (2003) J Mat Res 18:1975CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Arjun Dey
    • 1
    • 2
  • Anoop K. Mukhopadhyay
    • 2
  • S. Gangadharan
    • 1
  • Mithilesh K. Sinha
    • 1
  • Debabrata Basu
    • 1
  1. 1.Bio-Ceramics and Coating DivisionCentral Glass and Ceramic Research InstituteKolkataIndia
  2. 2.Mechanical Test Section, Analytical Facility DivisionCentral Glass and Ceramic Research InstituteKolkataIndia

Personalised recommendations