Skip to main content

Advertisement

Log in

Hydrogen-storage performance of an Mg–Ni–Fe alloy prepared by reactive mechanical grinding

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The 71.5%Mg–23.5%Ni–5%Fe alloy prepared by reactive mechanical grinding for 4 h does not need activation. The activated sample has the hydriding rate of 0.494 wt%/min for 5 min and absorbs 3.32 wt% for 60 min at 593 K under 1.2 MPa H2. It has the dehydriding rate of 0.330 wt%/min for 5 min and desorbs 2.42 wt%H for 20 min at 593 K 0.1 MPa H2. The XRD pattern of 71.5 wt%Mg–23.5 wt%Ni–5 wt%Fe after reactive mechanical grinding exhibits MgH2 in addition to starting elements Mg, Ni, and Fe. 71.5 wt%Mg–23.5 wt%Ni–5 wt%Fe after hydriding–dehydriding cycling contains Mg, Mg2Ni, MgO, and Fe. The reactive mechanical grinding of Mg with Ni and Fe is considered to facilitate nucleation by creating many defects on the surface and in the interior of Mg, by the additive acting as active sites for the nucleation and shorten diffusion distances of hydrogen atoms by reducing the particle size of Mg. The MgH2 formed in the as-milled 71.5 wt%Mg–23.5 wt%Ni–5 wt%Fe alloy is considered to lead to the creation of more defects and finer particle size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Reilly JJ, Wiswall RH (1967) Inorg Chem 6(12):2220

    Article  CAS  Google Scholar 

  2. Reilly JJ, Wiswall RH Jr (1968) Inorg Chem 7(11):2254

    Article  CAS  Google Scholar 

  3. Mintz MH, Gavra Z, Hadari Z (1978) J Inorg Nucl Chem 40:765

    Article  CAS  Google Scholar 

  4. Pezat M, Hbika A, Darriet B, Hagenmuller P (1978) French Anvar Patent 78 203 82

  5. Pezat M, Hbika A, Darriet B, Hagenmuller P (1979) Mater Res Bull 14:377

    Article  Google Scholar 

  6. Pezat M, Darriet B, Hagenmuller P (1980) J Less-Common Met 74:427

    Article  CAS  Google Scholar 

  7. Akiba E, Nomura K, Ono S, Suda S (1982) Int J Hydrogen Energy 7(10):787

    Article  CAS  Google Scholar 

  8. Tanguy B, Soubeyroux JL, Pezat M, Portier J, Hagenmuller P (1976) Mater Res Bull 11:1441

    Article  CAS  Google Scholar 

  9. Eisenberg FG, Zagnoli DA, Sheridan JJ III (1980) J Less-Common Met 74:323

    Article  CAS  Google Scholar 

  10. Huot J, Tremblay M-L, Schulz R (2003) J Alloys Compd 356–357:603

    Article  Google Scholar 

  11. Imamura H, Kusuhara M, Minami S, Matsumoto M, Masanari K, Sakata Y, Itoh K, Fukunaga T (2003) Acta Mater 51(20):6407

    Article  CAS  Google Scholar 

  12. Oelerich W, Klassen T, Bormann R (2001) J Alloys Compd 322:L5

    Article  CAS  Google Scholar 

  13. Dehouche Z, Klassen T, Oelerich W, Goyette J, Bose TK, Schulz R (2002) J Alloys Compd 347:319

    Article  CAS  Google Scholar 

  14. Barkhordarian G, Klassen T, Bormann R (2003) Scr Mater 49:213

    Article  CAS  Google Scholar 

  15. Yavari AR, LeMoulec A, de Castro FR, Deledda S, Friedrichs O, Botta WJ, Vaughan G, Klassen T, Fernandez A, Kvick A (2005) Scr Mater 52(8):719

    Article  CAS  Google Scholar 

  16. Berlouis LEA, Honnor P, Hall PJ, Morris S, Dodd SB (2006) J Mater Sci 41(19):6403. doi:10.1007/s10853-006-0732-1

    Article  ADS  CAS  Google Scholar 

  17. Dolci F, Di Chio M, Baricco M, Giamello E (2007) J Mater Sci 42(17):7180. doi:10.1007/s10853-007-1567-0

    Article  ADS  CAS  Google Scholar 

  18. Grigorova E, Khristov M, Khrussanova M, Peshev P (2008) J Mater Sci 43(15):5336. doi:10.1007/s10853-008-2779-7

    Article  ADS  CAS  Google Scholar 

  19. Khrussanova M, Mandzhukova T, Grigorova E, Khristov M, Peshev P (2007) J Mater Sci 42(10):3338. doi:10.1007/s10853-006-0586-6

    Article  ADS  CAS  Google Scholar 

  20. Song MY (1995) J Mater Sci 30:1343. doi:10.1007/BF00356142

    Article  ADS  CAS  Google Scholar 

  21. Song MY, Ivanov EI, Darriet B, Pezat M, Hagenmuller P (1985) Int J Hydrogen Energy 10(3):169

    Article  CAS  Google Scholar 

  22. Song MY, Ivanov EI, Darriet B, Pezat M, Hagenmuller P (1987) J Less-Common Met 131:71

    Article  CAS  Google Scholar 

  23. Song MY (1995) Int J Hydrogen Energy 20(3):221

    Article  CAS  Google Scholar 

  24. Bobet J-L, Akiba E, Nakamura Y, Darriet B (2000) Int J Hydrogen Energy 25:987

    Article  CAS  Google Scholar 

  25. Yim CD, You BS, Na YS, Bae JS (2007) Catal Today 120:276

    Article  CAS  Google Scholar 

  26. Song MY, Kwon IH, Kwon SN, Park CG, Hong SH, Mumm DR, Bae JS (2006) J Alloys Compd 415:266

    Article  CAS  Google Scholar 

  27. Baek SH (2009) Improvement of the hydrogen-storage properties of Mg by the addition of Ni, Fe and Fe2O3 and reactive mechanical grinding. M. Eng. Thesis, Chonbuk National University, Republic of Korea

  28. Didisheim JJ, Zolliker P, Yvon K, Fischer P, Schefer J, Gubelmann M, Williams AF (1984) Inorg Chem 23:1953

    Article  CAS  Google Scholar 

  29. Puszkiel JA, Arneodo Larochette P, Gennari FC (2008) Int J Hydrogen Energy 33:3555

    Article  CAS  Google Scholar 

  30. Song MY, Ahn DS, Kwon IH, Ahn HJ (1999) Met Mater Int 5(5):485

    CAS  Google Scholar 

Download references

Acknowledgement

This research was performed for the Hydrogen Energy R&D Center, one of the twenty-first century Frontier R&D Program, funded by the Ministry of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myoung Youp Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, M.Y., Baek, S.H., Bobet, JL. et al. Hydrogen-storage performance of an Mg–Ni–Fe alloy prepared by reactive mechanical grinding. J Mater Sci 44, 4827–4833 (2009). https://doi.org/10.1007/s10853-009-3736-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3736-9

Keywords

Navigation