Journal of Materials Science

, Volume 44, Issue 18, pp 4827–4833 | Cite as

Hydrogen-storage performance of an Mg–Ni–Fe alloy prepared by reactive mechanical grinding

  • Myoung Youp Song
  • Sung Hwan Baek
  • Jean-Louis Bobet
  • Sung Nam Kwon
  • Seong-Hyeon Hong


The 71.5%Mg–23.5%Ni–5%Fe alloy prepared by reactive mechanical grinding for 4 h does not need activation. The activated sample has the hydriding rate of 0.494 wt%/min for 5 min and absorbs 3.32 wt% for 60 min at 593 K under 1.2 MPa H2. It has the dehydriding rate of 0.330 wt%/min for 5 min and desorbs 2.42 wt%H for 20 min at 593 K 0.1 MPa H2. The XRD pattern of 71.5 wt%Mg–23.5 wt%Ni–5 wt%Fe after reactive mechanical grinding exhibits MgH2 in addition to starting elements Mg, Ni, and Fe. 71.5 wt%Mg–23.5 wt%Ni–5 wt%Fe after hydriding–dehydriding cycling contains Mg, Mg2Ni, MgO, and Fe. The reactive mechanical grinding of Mg with Ni and Fe is considered to facilitate nucleation by creating many defects on the surface and in the interior of Mg, by the additive acting as active sites for the nucleation and shorten diffusion distances of hydrogen atoms by reducing the particle size of Mg. The MgH2 formed in the as-milled 71.5 wt%Mg–23.5 wt%Ni–5 wt%Fe alloy is considered to lead to the creation of more defects and finer particle size.


Fe2O3 Mechanical Alloy MgH2 Shorten Diffusion Distance Magnesium Hydride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was performed for the Hydrogen Energy R&D Center, one of the twenty-first century Frontier R&D Program, funded by the Ministry of Science and Technology.


  1. 1.
    Reilly JJ, Wiswall RH (1967) Inorg Chem 6(12):2220CrossRefGoogle Scholar
  2. 2.
    Reilly JJ, Wiswall RH Jr (1968) Inorg Chem 7(11):2254CrossRefGoogle Scholar
  3. 3.
    Mintz MH, Gavra Z, Hadari Z (1978) J Inorg Nucl Chem 40:765CrossRefGoogle Scholar
  4. 4.
    Pezat M, Hbika A, Darriet B, Hagenmuller P (1978) French Anvar Patent 78 203 82Google Scholar
  5. 5.
    Pezat M, Hbika A, Darriet B, Hagenmuller P (1979) Mater Res Bull 14:377CrossRefGoogle Scholar
  6. 6.
    Pezat M, Darriet B, Hagenmuller P (1980) J Less-Common Met 74:427CrossRefGoogle Scholar
  7. 7.
    Akiba E, Nomura K, Ono S, Suda S (1982) Int J Hydrogen Energy 7(10):787CrossRefGoogle Scholar
  8. 8.
    Tanguy B, Soubeyroux JL, Pezat M, Portier J, Hagenmuller P (1976) Mater Res Bull 11:1441CrossRefGoogle Scholar
  9. 9.
    Eisenberg FG, Zagnoli DA, Sheridan JJ III (1980) J Less-Common Met 74:323CrossRefGoogle Scholar
  10. 10.
    Huot J, Tremblay M-L, Schulz R (2003) J Alloys Compd 356–357:603CrossRefGoogle Scholar
  11. 11.
    Imamura H, Kusuhara M, Minami S, Matsumoto M, Masanari K, Sakata Y, Itoh K, Fukunaga T (2003) Acta Mater 51(20):6407CrossRefGoogle Scholar
  12. 12.
    Oelerich W, Klassen T, Bormann R (2001) J Alloys Compd 322:L5CrossRefGoogle Scholar
  13. 13.
    Dehouche Z, Klassen T, Oelerich W, Goyette J, Bose TK, Schulz R (2002) J Alloys Compd 347:319CrossRefGoogle Scholar
  14. 14.
    Barkhordarian G, Klassen T, Bormann R (2003) Scr Mater 49:213CrossRefGoogle Scholar
  15. 15.
    Yavari AR, LeMoulec A, de Castro FR, Deledda S, Friedrichs O, Botta WJ, Vaughan G, Klassen T, Fernandez A, Kvick A (2005) Scr Mater 52(8):719CrossRefGoogle Scholar
  16. 16.
    Berlouis LEA, Honnor P, Hall PJ, Morris S, Dodd SB (2006) J Mater Sci 41(19):6403. doi: 10.1007/s10853-006-0732-1 CrossRefADSGoogle Scholar
  17. 17.
    Dolci F, Di Chio M, Baricco M, Giamello E (2007) J Mater Sci 42(17):7180. doi: 10.1007/s10853-007-1567-0 CrossRefADSGoogle Scholar
  18. 18.
    Grigorova E, Khristov M, Khrussanova M, Peshev P (2008) J Mater Sci 43(15):5336. doi: 10.1007/s10853-008-2779-7 CrossRefADSGoogle Scholar
  19. 19.
    Khrussanova M, Mandzhukova T, Grigorova E, Khristov M, Peshev P (2007) J Mater Sci 42(10):3338. doi: 10.1007/s10853-006-0586-6 CrossRefADSGoogle Scholar
  20. 20.
    Song MY (1995) J Mater Sci 30:1343. doi: 10.1007/BF00356142 CrossRefADSGoogle Scholar
  21. 21.
    Song MY, Ivanov EI, Darriet B, Pezat M, Hagenmuller P (1985) Int J Hydrogen Energy 10(3):169CrossRefGoogle Scholar
  22. 22.
    Song MY, Ivanov EI, Darriet B, Pezat M, Hagenmuller P (1987) J Less-Common Met 131:71CrossRefGoogle Scholar
  23. 23.
    Song MY (1995) Int J Hydrogen Energy 20(3):221CrossRefGoogle Scholar
  24. 24.
    Bobet J-L, Akiba E, Nakamura Y, Darriet B (2000) Int J Hydrogen Energy 25:987CrossRefGoogle Scholar
  25. 25.
    Yim CD, You BS, Na YS, Bae JS (2007) Catal Today 120:276CrossRefGoogle Scholar
  26. 26.
    Song MY, Kwon IH, Kwon SN, Park CG, Hong SH, Mumm DR, Bae JS (2006) J Alloys Compd 415:266CrossRefGoogle Scholar
  27. 27.
    Baek SH (2009) Improvement of the hydrogen-storage properties of Mg by the addition of Ni, Fe and Fe2O3 and reactive mechanical grinding. M. Eng. Thesis, Chonbuk National University, Republic of KoreaGoogle Scholar
  28. 28.
    Didisheim JJ, Zolliker P, Yvon K, Fischer P, Schefer J, Gubelmann M, Williams AF (1984) Inorg Chem 23:1953CrossRefGoogle Scholar
  29. 29.
    Puszkiel JA, Arneodo Larochette P, Gennari FC (2008) Int J Hydrogen Energy 33:3555CrossRefGoogle Scholar
  30. 30.
    Song MY, Ahn DS, Kwon IH, Ahn HJ (1999) Met Mater Int 5(5):485Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Myoung Youp Song
    • 1
  • Sung Hwan Baek
    • 2
  • Jean-Louis Bobet
    • 3
  • Sung Nam Kwon
    • 2
  • Seong-Hyeon Hong
    • 4
  1. 1.Division of Advanced Materials Engineering, Department of Hydrogen and Fuel Cells, Research Center of Advanced Materials Development, Engineering Research InstituteChonbuk National UniversityJeonjuRepublic of Korea
  2. 2.Department of Hydrogen and Fuel CellsChonbuk National UniversityJeonjuRepublic of Korea
  3. 3.ICMCB, CNRS [UPR 9048]Pessac CedexFrance
  4. 4.Powder Materials Research Center, KIMS, Korea Institute of Machinery & MaterialsKyungnamRepublic of Korea

Personalised recommendations