Advertisement

Journal of Materials Science

, Volume 44, Issue 18, pp 4796–4805 | Cite as

Synthesis and characterization of some novel thermally stable poly(amide–imide)s

  • Muhammad Ali Mohsin
  • Zareen Akhter
  • Michael Bolte
  • M. Saeed Butt
  • Muhammad Saif Ullah Khan
  • Humaira M. Siddiqi
Article

Abstract

Two new diamines with built-in amide linkage were synthesized from p-nitrobenzoyl chloride in two steps and characterized by their melting points, elemental analyses, FT-IR and 1H–NMR spectral studies. One of the diamine precursors was also characterized by single crystal X-ray analysis indicating the trans orientation of amide bonds. The planes of the aromatic rings formed dihedral angles in the range of 11.7°–56.2° and the crystal packing was stabilized by N–H···O hydrogen bonds. The synthesized diamines were then polymerized with three commercially available dianhydrides either by one-step solution technique or by two-step procedure involving ring-opening poly-addition to give polyamic acid followed by cyclic dehydration. The resulting poly(amide–imide)s were characterized by their elemental analyses and FTIR spectroscopy. The polymers possessed excellent chemical resistance and were found insoluble in almost all the common solvents tested except conc. H2SO4, in which these showed inherent viscosities in the range 0.47–0.73 dL g−1 at 28 °C. The thermal behavior of the polymers, investigated by the DSC and TG analyses, revealed that the products were stable up to 300 °C in nitrogen. The activation energies of pyrolysis, entropy, and enthalpy values for each of the synthesized polymers were also estimated by Horowitz and Metzger method using thermal degradation data. These values were high exhibiting the remarkable thermal stability of the poly(amide–imide)s. Wide-angle X-ray studies of the polymers were also carried out which provided information about their morphology.

Keywords

Polyimide Amic Acid PMDA Hydrazine Monohydrate Pyromellitic Dianhydride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Feger C, Khojasteh MM, McGrath JE (1989) Polyimides: materials chemistry and characterization. Elsevier, AmsterdamGoogle Scholar
  2. 2.
    Bessonv MI, Kotton MM, Kudryavtsev VV, Laius LA (1987) Polyimides: thermally stable polymers. Consultants Bureau, New YorkGoogle Scholar
  3. 3.
    Mittal KL (1984) Polyimides: synthesis, characterization and applications, vol 1 & 2. Plenum, New YorkGoogle Scholar
  4. 4.
    Wilson D, Stenzenberger HD, Hergenrother PM (1990) Polyimides. Blackie, Glasgow and LondonGoogle Scholar
  5. 5.
    Yin DX, Li YF, Yang HX, Yang SY (2005) Polymer 46:3119CrossRefGoogle Scholar
  6. 6.
    Yang CP, Chen RS (2002) J Polym Sci Polym Chem 40:429CrossRefGoogle Scholar
  7. 7.
    Madhra MK, Salunke AK, Banerjee S, Prabha S (2002) Macromol Chem Phys 203:1238CrossRefGoogle Scholar
  8. 8.
    Ghosh MK, Mittal KL (1996) Polyimides; fundamentals and applications. Marcel Decker, New YorkGoogle Scholar
  9. 9.
    Ayala D, Lozano AE, De Abajo J, de la Campa JG (1999) J Polym Sci Part A Polym Chem 37:805CrossRefGoogle Scholar
  10. 10.
    Hsiao SH, Li CT (1999) Macromolecules 31:7213CrossRefADSGoogle Scholar
  11. 11.
    Yang CP, Su YY, Hsiao FZ (2004) Polymer 45:7529CrossRefGoogle Scholar
  12. 12.
    Yang CP, Hsiao SC, Tsai CY, Liou GS (2004) J Polym Sci Part A Polym Chem 42:2416CrossRefGoogle Scholar
  13. 13.
    Yang CP, Hsiao SH, Wu KL (2003) Polymer 44:7067CrossRefGoogle Scholar
  14. 14.
    Kricheldorf HR, Linzer V (1995) Polymer 36:1893CrossRefGoogle Scholar
  15. 15.
    Chun BW (1994) Polymer 35:4203CrossRefGoogle Scholar
  16. 16.
    Yamada M, Kusama M, Matsumoto T, Kurosaki T (1993) Macromolecules 26:4961CrossRefADSGoogle Scholar
  17. 17.
    Matsumoto T, Kurosaki T (1996) React Funct Polym 30:55CrossRefGoogle Scholar
  18. 18.
    Volksen W, Cha HJ, Sanchez MI, Yoon DY (1996) React Funct Polym 30:61CrossRefGoogle Scholar
  19. 19.
    Li F, Fang S, Ge JJ, Honigfort PS, Chen JC, Harris FW, Cheng SZD (1999) Polymer 40:4571CrossRefGoogle Scholar
  20. 20.
    Chou CH, Reddy DS, Shu CF (2002) J Polym Sci Part A Polym Chem 40:3615CrossRefGoogle Scholar
  21. 21.
    Lin SH, Li F, Cheng SZD, Harris FW (1998) Macromolecules 31:2080CrossRefADSGoogle Scholar
  22. 22.
    Chung IS, Kim SY (2000) Macromolecules 33:3190CrossRefADSGoogle Scholar
  23. 23.
    Hasegawa M, Sensui N, Shido Y, Yokota R (1999) Macromolecules 32:387CrossRefADSGoogle Scholar
  24. 24.
    Zheng HB, Wang ZY (2000) Macromolecules 33:4310CrossRefADSGoogle Scholar
  25. 25.
    Liou GS, Maruyama M, Kakimoto M, Imai Y (1998) J Polym Sci Part A Polym Chem 36:2021CrossRefGoogle Scholar
  26. 26.
    Mehdipour-Ataei S, Keshavarz S (2003) J Appl Polym Sci 89:2567CrossRefGoogle Scholar
  27. 27.
    Xiao J, Wan X, Zhang D, Zhou QF, Turner SR (2001) J Polym Sci Part A Polym Chem 39:408CrossRefGoogle Scholar
  28. 28.
    Xiao J, Wan X, Zhang D, Zhang H, Zhou QF, Turner SR (2002) J Polym Sci Part A Polym Chem 40:852CrossRefGoogle Scholar
  29. 29.
    Yang CP, Su YY (2005) J Polym Res 12:17CrossRefGoogle Scholar
  30. 30.
    Mehdipour-Ataei S, Zigheimat F (2007) Eur Polym J 43:1020CrossRefGoogle Scholar
  31. 31.
    Hajipour AR, Zahmatkesh S, Ruoho AE (2006) Polym Bull 57:1CrossRefGoogle Scholar
  32. 32.
    Shina MH, Huang JW, Huang MC, Kang CC, Chen WC, Yeh MY (2008) Polym Bull 60:597CrossRefGoogle Scholar
  33. 33.
    Aleksandrova EL, Goikhman MY, Subbotina LI, Romashkova KA, Gofman IF, Kudryavtsev VV, Yakimanskii AV (2003) Semiconductors 37:821CrossRefADSGoogle Scholar
  34. 34.
    Billerbeck CJ, Henke SJ (1985) Engineering thermoplastics. Dekker, New YorkGoogle Scholar
  35. 35.
    Burrell H (1970) In: Mark HF, Gaylord NG, Bikales NM et al (eds) Encyclopedia of polymer science and technology, vol 12. John Wiley & Sons, New YorkGoogle Scholar
  36. 36.
    Butt MS, Akhter Z, Zaman MZ, Munir A (2005) Eur Polym J 41:1638CrossRefGoogle Scholar
  37. 37.
    Morgan PW (1965) Condensation polymers by interfacial and solution methods. New York, InterscienceGoogle Scholar
  38. 38.
    Mehdipour-Ataei S, Bahri-Laleh N, Amirshaghaghi A (2006) Polym Degrad Stab 91:2622CrossRefGoogle Scholar
  39. 39.
    Jeong KU, Kim JJ, Yoon TH (2001) Polymer 42:6019CrossRefGoogle Scholar
  40. 40.
    Lee CW, Kwak SM, Yoon TH (2006) Polymer 47:4140CrossRefGoogle Scholar
  41. 41.
    Jeong KU, Jo YJ, Yoon TH (2001) J Polym Sci Polym Chem 39:3335CrossRefGoogle Scholar
  42. 42.
    Saeed MA, Akhter Z, Khan MS, Iqbal N, Butt MS (2008) Polym Degrad Stab 93:1762CrossRefGoogle Scholar
  43. 43.
    Butt MS, Akhter Z, Zaman MZ, Siddiqi HM (2008) Colloid Polym Sci 286:1455CrossRefGoogle Scholar
  44. 44.
    Leu WT, Hsiao SH (2006) Eur Polym J 42:328CrossRefGoogle Scholar
  45. 45.
    Horowitz HH, Metzger G (1963) Anal Chem Anal Chem 35:1464Google Scholar
  46. 46.
    Mehdipour-Ataei S, Hatami M (2005) Eur Polym J 41:2010CrossRefGoogle Scholar
  47. 47.
    Mehdipour-Ataei S, Bahri-Laleh N, Hassan A (2006) Eur Polym J 42:2343CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Muhammad Ali Mohsin
    • 1
  • Zareen Akhter
    • 1
  • Michael Bolte
    • 2
  • M. Saeed Butt
    • 1
  • Muhammad Saif Ullah Khan
    • 1
  • Humaira M. Siddiqi
    • 1
  1. 1.Department of ChemistryQuaid-i-Azam UniversityIslamabadPakistan
  2. 2.Institut für Anorganische ChemieJ.W.Goethe-Universität FrankfurtFrankfurt/MainGermany

Personalised recommendations