Skip to main content

Advertisement

Log in

Interfacial interaction of solid cobalt with liquid Pb-free Sn–Bi–In–Zn–Sb soldering alloys

  • Interface Science
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Dissolution kinetics of cobalt in liquid 87.5%Sn–7.5%Bi–3%In–1%Zn–1%Sb and 80%Sn–15%Bi–3%In–1%Zn–1%Sb soldering alloys and phase formation at the cobalt–solder interface have been investigated in the temperature range of 250–450 °C. The temperature dependence of the cobalt solubility in soldering alloys was found to obey a relation of the Arrhenius type cs = 4.06 × 102 exp (−46300/RT) mass% for the former alloy and cs = 5.46 × 102 exp (−49200/RT) mass% for the latter, where R is in J mol−1 K−1 and T in K. For tin, the appropriate equation is cs = 4.08 × 102 exp (−45200/RT) mass%. The dissolution rate constants are rather close for these soldering alloys and vary in the range (1–9) × 10−5 m s−1 at disc rotational speeds of 6.45–82.4 rad s−1. For both alloys, the CoSn3 intermetallic layer is formed at the interface of cobalt and the saturated or undersaturated solder melt at 250 °C and dipping times up to 1800 s, whereas the CoSn2 intermetallic layer occurs at higher temperatures of 300–450 °C. Formation of an additional intermetallic layer (around 1.5 μm thick) of the CoSn compound was only observed at 450 °C and a dipping time of 1800 s. A simple mathematical equation is proposed to evaluate the intermetallic-layer thickness in the case of undersaturated melts. The tensile strength of the cobalt-to-solder joints is 95–107 MPa, with the relative elongation being 2.0–2.6%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Frear DR (1999) JOM 51:22

    Article  CAS  Google Scholar 

  2. Lee MS, Chen C, Kao CR (1999) Chem Mater 11:292

    Article  CAS  Google Scholar 

  3. Tao WH, Chen C, Ho CE, Chen WT, Kao CR (2001) Chem Mater 13:1051

    Article  CAS  Google Scholar 

  4. Lalena JN, Dean NF, Weiser MW (2002) J Electron Mater 31:1244

    Article  CAS  Google Scholar 

  5. Chiu MY, Wang SS, Chuang TH (2002) J Electron Mater 31:494

    Article  CAS  Google Scholar 

  6. Alam MO, Chan YC, Tu KN (2003) J Appl Phys 94:4108

    Article  CAS  Google Scholar 

  7. Yoon J-W, Kim S-W, Koo J-M, Kim D-G, Jung S-B (2004) J Electron Mater 33:1190

    Article  CAS  Google Scholar 

  8. Lee H-T, Lin H-S, Lee C-S, Chen P-W (2005) Mater Sci Eng A 407:36

    Article  Google Scholar 

  9. Liu PL, Shang JK (2005) Scripta Mater 53:631

    Article  Google Scholar 

  10. Rizvi MJ, Chan YC, Bailey C, Lu H, Islam MN (2006) J Alloys Compd 407:208

    Article  CAS  Google Scholar 

  11. Wang C-h, Chen S-w (2006) Acta Mater 54:247

    Article  CAS  Google Scholar 

  12. Suganuma K, Lee J-E, Kim K-S (2007) In: Abstracts MRS 2007 Spring meeting, San Francisco, CA, 9–13 April 2007, E1.6

  13. Bieler T, Borgesen P, Xing Y, Lehman L, Cotts E (2007) In: Abstracts of MRS 2007 Spring meeting, San Francisco, CA, 9–13 April 2007, E4.6

  14. Chason E, Reinbold L, Jadhav N, Kelly V, Shin JW, Buchovecky E, Hariharaputran R, Kumar S (2007) In: Abstracts of MRS 2007 Spring meeting, San Francisco, CA, 9–13 April 2007, E2.4

  15. Ursula K, Moon K, Handwerker C (2007) In: Abstracts of materials science and technology 2007 conference and exhibition, Detroit, MI, 16–20 September 2007, p 344

  16. Anderson IE, Walleser J, Rehbein D, Kracher A, Harringa J (2007) In: Abstracts of materials science and technology 2007 conference and exhibition, Detroit, MI, 16–20 September 2007, p 344

  17. Grossklaus KA, Handwerker CA, Stach EA, Revur RR, Sengupta S, Hwang H (2007) In: Abstracts of materials science and technology 2007 conference and exhibition, Detroit, MI, 16–20 September 2007, p 345

  18. Ogunseitan OA (2007) JOM 59(7):12

    Article  CAS  Google Scholar 

  19. Subramanian KN (ed) (2007) Lead-free electronic solders. Springer, Berlin, 378 pp

  20. Tu KN (2007) Solder joint technology. Springer, Berlin, p 370

    Google Scholar 

  21. Zhu W, Wang J, Liu H, Jin Z, Gong W (2007) Mater Sci Eng 456:109

    Article  Google Scholar 

  22. Wang H, Wang F, Gao F, Ma X, Qian Y (2007) J Alloys Compd 433:302

    Article  CAS  Google Scholar 

  23. Lin C-T, Hsi C-S, Wang M-C, Chang T-C, Liang M-K (2008) J Alloys Compd 459:225

    Article  CAS  Google Scholar 

  24. Barmak K, Berry DC, Khoruzha VG, Sidorko VR, Meleshevich KA, Samelyuk AV, Dybkov VI (2008) In: Proceedings of the materials science and technology conference: Pb-free, Pb-bearing joining and packaging materials and processes for microelectronics, Pittsburgh, PA, 5–9 October 2008, p 262

  25. Cheng F, Nishikawa H, Takemoto T (2008) J Mater Sci 43:3643. doi:https://doi.org/10.1007/s10853-008-2580-7

    Article  CAS  Google Scholar 

  26. Gao F, Cheng F, Nishikawa H, Takemoto T (2008) Mater Lett 62:2257

    Article  CAS  Google Scholar 

  27. Liu CZ, Zhang W (2009) J Mater Sci 44:149. doi:https://doi.org/10.1007/s10953-008-3118-8

    Article  CAS  Google Scholar 

  28. Ma H, Suhling JC (2009) J Mater Sci 44:1141. doi:https://doi.org/10.1007/s10853-008-3125-9

    Article  CAS  Google Scholar 

  29. Cheng F, Gao F, Nishikawa H, Takemoto T (2009) J Alloys Compd 472:530

    Article  CAS  Google Scholar 

  30. Wang F, O’Keefe M, Brinkmeyer B (2009) J Alloys Compd 477:267

    Article  CAS  Google Scholar 

  31. Wang YW, Chang CC, Kao CR (2009) J Alloys Compd 478:L1

    Article  CAS  Google Scholar 

  32. Wang YW, Lin YW, Tu CT, Kao CR (2009) J Alloys Compd 478:121

    Article  CAS  Google Scholar 

  33. Hauffe K (1955) Reaktionen in und an festen Stoffen. Springer, Berlin

    Book  Google Scholar 

  34. Seith W (1955) Diffusion in metallen. Springer, Berlin

    Book  Google Scholar 

  35. Hedvall JA (1966) Solid state chemistry. Elsevier, Amsterdam

    Google Scholar 

  36. Chebotin VN (1982) Fizicheskaya khimiya tverdogo tela. Khimiya, Moskwa

    Google Scholar 

  37. Dybkov VI (2002) Reaction diffusion and solid state chemical kinetics. IPMS, Kyiv

    Google Scholar 

  38. Hansen M (1958) Constitution of binary alloys. McGraw-Hill, New York

    Book  Google Scholar 

  39. Lashko SV, Lashko NF (1988) Paika metallov. Mashinostroenie, Moskwa

    Google Scholar 

  40. Shunk FA (1969) Constitution of binary alloys: second supplement. McGraw-Hill, New York

    Google Scholar 

  41. Massalski TB, Murray JL, Bennett LH, Baker H (eds) (1986) Binary alloy phase diagrams, vol 2. American Society of Metals, Metals Park

  42. Lyakishev NP (ed) (1999) Diagrammy sostoyaniya dvoynikh metallicheskikh sistem, vol 3, Part 1. Mashinostroenie, Moskwa

  43. Jiang M, Sato J, Ohnuma I, Kainuma R, Ishida K (2004) Calphad 28:213

    Article  CAS  Google Scholar 

  44. Okamoto H (2006) J Phase Equilib Diffus 27:308

    Article  CAS  Google Scholar 

  45. Gurov KP, Kartashkin BA, Ugaste YuE (1981) Vzaimnaya diffusiya v mnogofaznikh metallicheskikh sistemakh. Nauka, Moskwa

    Google Scholar 

  46. Barmak K, Dybkov VI (2003) J Mater Sci 38:3249. doi:https://doi.org/10.1023/A:1025129803413

    Article  CAS  Google Scholar 

  47. Dybkov VI, Barmak K, Lengauer W, Gas P (2005) J Alloys Compd 389:61

    Article  CAS  Google Scholar 

  48. Levich VG (1959) Fiziko-Khimicheskaya Hidrodinamika. Fizmatgiz, Moskwa

    Google Scholar 

  49. Kassner TF (1967) J Electrochem Soc 114:689

    Article  CAS  Google Scholar 

  50. Vol AE (1962) Stroeniye i svoistva dvoynikh metallicheskikh system, vol 2. Fizmatgiz, Moskwa

    Google Scholar 

  51. Lang A, Jeitschko W (1996) Z Metallkd 87:759

    CAS  Google Scholar 

  52. Nial O (1938) Z Anorg Allg Chem 238:287

    Article  CAS  Google Scholar 

  53. Matveyeva NM, Nikitina SV, Zezin SB (1968) Izv Akad Nauk SSSR Met 5:194

    Google Scholar 

  54. Djega Mariadassou C, Lecocq P, Michel A (1969) Ann Chim 4:175

    CAS  Google Scholar 

  55. Panteleimonov LA, Portnova GF, Nesterova OP (1971) Vestnik Moskov Univ Khimiya 26:79

    Google Scholar 

  56. Havinga EE, Damsma H, Hokkeling P (1972) J Less-Common Met 27:169

    Article  CAS  Google Scholar 

  57. Buschow KHJ, van Engen PG, Jongebreur R (1983) J Magn Magn Mater 38:1

    Article  CAS  Google Scholar 

  58. Cobalt Tin, ICDD, PDF2, 1999, File 00-02-0559, α-CoSn3

  59. Cobalt Tin, Pauling File Binary Edition, Inorganic Materials, 2002. https://doi.org/crystdb.nims.go.jp

  60. Chao Y-H, Chen S-W, Chang C-H, Chen C-C (2008) Metall Mater Trans A 39:477

    Article  Google Scholar 

  61. Zhu W, Liu H, Wang J, Jin Z (2008) J Alloys Compd 456:113

    Article  CAS  Google Scholar 

  62. Wang C-h, Chen S-w (2007) J Mater Res 22:3404

    Article  CAS  Google Scholar 

  63. Dybkov VI (2009) JOM 61:78

    Article  Google Scholar 

Download references

Acknowledgements

This investigation was supported in part by the CRDF Grant No. UKE2-2698-KV-06. The authors thank D.M. Pashko for machining cobalt specimens and other mechanical work, L.A. Duma for taking X-ray patterns, L.M. Kuzmenko for carrying out chemical analyses, E.S. Rabotina for making metallic cross-sections, and I.G. Kondratenko and S.V. Bykova for their help in conducting the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Dybkov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dybkov, V.I., Khoruzha, V.G., Sidorko, V.R. et al. Interfacial interaction of solid cobalt with liquid Pb-free Sn–Bi–In–Zn–Sb soldering alloys. J Mater Sci 44, 5960–5979 (2009). https://doi.org/10.1007/s10853-009-3717-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3717-z

Keywords

Navigation