Journal of Materials Science

, Volume 44, Issue 17, pp 4625–4632 | Cite as

Carbon based conductive photoresist

  • Nina Hauptman
  • Maša Žveglič
  • Marijan Maček
  • Marta Klanjšek Gunde


A conductive photoresist for photolithographic application was studied here. The negative near-UV sensitive epoxy-based photoresist was used as a polymer matrix and conductive carbon black was used as functional filler. DC electrical resistivity of composite as a function of filler concentration has a well-known S-shape. After UV-exposure the resistivity of the composite decreases for almost five orders of magnitude, mostly at percolation threshold (approx. 0.6 vol.%). This effect can be attributed to the fully cross-linked polymer structure formed during UV-exposure of the composite. The resistivity of prepared samples also depend on the state of dispersion of the functional filler obtained using different dispersing additives. Composites with better dispersed particles have lower resistivities. This effect remained below one order of magnitude and decreased after UV-exposure. The composites with carbon black concentration of up to 1.1 vol.% are suitable for spin-coating and photolithography.


Percolation Threshold Conductive Filler Filler Concentration Glycidyl Ether Conductive Polymer Composite 



This research was supported by Slovenian research Agency (Project No. J2-9455). Nina Hauptman and Maša Žveglič acknowledge the Slovenian Research Agency for young researchers support. Free carbon black samples from Evonik-Degussa Croatia are gratefully acknowledged. AIM Chemicals Croatia is acknowledged for providing free dispersants.


  1. 1.
    Strümpler R, Glatz-Reichenbach J (1999) J Electroceram 3(4):329CrossRefGoogle Scholar
  2. 2.
    Li Y, Wong CP (2006) Mater Sci Eng R 51:1CrossRefGoogle Scholar
  3. 3.
    Jiguet S, Bertsch A, Hofmann H, Renaud P (2004) Adv Eng Mater 6:719CrossRefGoogle Scholar
  4. 4.
    Jiguet S, Bertsch A, Hofmann H, Renaud P (2005) Adv Funct Mater 15:1511CrossRefGoogle Scholar
  5. 5.
    Flandin L, Brechet Y, Cavaille JY (2001) Compos Sci Technol 61:895CrossRefGoogle Scholar
  6. 6.
    Salmi A, Benfarhi S, Donnet JB, Decker C (2006) Eur Polym J 42:1966CrossRefGoogle Scholar
  7. 7.
    Gojny FH, Wichmann MHG, Fiedler B, Kinloch IA, Bauhofer W, Windle AH, Schulte K (2006) Polymer 47:2036CrossRefGoogle Scholar
  8. 8.
    El-Tantawy F, Kamada K, Ohnabe H (2002) Mater Lett 57:242CrossRefGoogle Scholar
  9. 9.
    Schueler R, Petermann J, Schulte K, Wentzel HP (1998) J Appl Polym Sci 63:1741CrossRefGoogle Scholar
  10. 10.
    Mather PJ, Thomas KM (1997) J Mater Sci 32:401. doi: 10.1023/A:1018557501174 CrossRefGoogle Scholar
  11. 11.
    Zhang W, Blackburn RS, Denghani-Sanij AA (2007) J Mater Sci 42:7861. doi: 10.1007/s10853-007-1670-2 CrossRefADSGoogle Scholar
  12. 12.
    Zhang W, Dehghani-Sanij AA, Blackburn RS (2007) J Mater Sci 42:3408. doi: 10.1007/s10853-007-1688-5 CrossRefADSGoogle Scholar
  13. 13.
    Drubetski M, Siegmann A, Narkis M (2007) J Mater Sci 42:1. doi: 10.1007/s10853-006-1203-4 CrossRefADSGoogle Scholar
  14. 14.
    Chekanov Y, Ohnogi R, Asai S, Sumita M (1999) J Mater Sci 34:5589. doi: 10.1023/A:1004737217503 CrossRefGoogle Scholar
  15. 15.
    Balberg I (2002) Carbon 40:139CrossRefGoogle Scholar
  16. 16.
    Niu X, Peng S, Liu L, Wen W, Sheng P (2007) Adv Mater 19:2682CrossRefGoogle Scholar
  17. 17.
    Park BY, Taherabadi L, Wang C, Zoval J, Madou MJ (2005) J Electrochem Soc 152:J136CrossRefGoogle Scholar
  18. 18.
    Cong H, Pan T (2008) Adv Funct Mater 18:1912CrossRefGoogle Scholar
  19. 19.
    Lux F (1993) J Mater Sci 28:285. doi: 10.1007/BF00357799 CrossRefADSGoogle Scholar
  20. 20.
    Foulger SH (1999) J Appl Polym Sci 72:1573CrossRefGoogle Scholar
  21. 21.
    Tsangaris GM, Kazilas MC (2002) Mater Sci Technol 18:226CrossRefGoogle Scholar
  22. 22.
    Balberg I, Azulay D, Toker D, Millo O (2004) Int J Mod Phys B 18:2091MATHCrossRefADSGoogle Scholar
  23. 23.
    Day RA, Gelorme JD, Russel RA, Witt SJ (1994) US patent No. 5304457Google Scholar
  24. 24.
    Shaw JM, Gelorme JD, LaBianca NC, Conley WE, Holmes SJ (1997) IBM J Res Dev 41:81CrossRefGoogle Scholar
  25. 25.
    Simčič J, Pelicon P, Rupnik Z, Mihelič M, Razpet A, Jenko D, Maček M (2005) Nucl Instrum Methods Phys Res B 241:479CrossRefADSGoogle Scholar
  26. 26.
    Klanjšek Gunde M, Hauptman N, Maček M, Kunaver M (2009) Appl Phys A 95:673CrossRefADSGoogle Scholar
  27. 27.
    Klanjšek Gunde M, Hauptman N, Maček M (2008) Proc SPIE 6882:68820MCrossRefGoogle Scholar
  28. 28.
    Bhattacharya A, Rawlins JW, Ray P (eds) (2009) Polymer grafting and crosslinking. Wiley & Sons, LondonGoogle Scholar
  29. 29.
    Tsubokawa N (2007) Polym J 39:983CrossRefGoogle Scholar
  30. 30.
    Cheng J, Wang L, Huo J, Yu H, Yang Q, Deng L (2008) J Polym Sci B Polym Phys 46:1529CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Nina Hauptman
    • 1
  • Maša Žveglič
    • 1
  • Marijan Maček
    • 2
  • Marta Klanjšek Gunde
    • 1
  1. 1.National Institute of ChemistryLjubljanaSlovenia
  2. 2.Faculty of Electrical EngineeringUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations