Advertisement

Journal of Materials Science

, Volume 44, Issue 16, pp 4455–4459 | Cite as

Sol–gel combustion synthesis of nanocrystalline LaMnO3 powders and photocatalystic properties

  • Yuanyuan Li
  • Shanshan Yao
  • Lihong Xue
  • Youwei Yan
Article

Abstract

A novel LaMnO3 photocatalyst with perovskite structure was prepared by sol–gel combustion method. The combustion reaction mechanisms of nanocrystalline LaMnO3 powders were investigated by thermal analysis, infrared spectra, and X-ray diffraction technique. The results showed that the gels exhibited self-propagating behavior after ignition in air. Nanocrystalline LaMnO3 powders can be synthesized in one step by using sol–gel combustion synthesis. The photocatalytic activity of the LaMnO3 powders were evaluated by degradation of methyl orange (MO) in water under UV light irradiation. The results showed that the LaMnO3 powders exhibit good photocatalytic activities under UV light irradiation. The degradation percentage after 36 h on LaMnO3 powders was about 76%.

Keywords

Photocatalytic Activity Methyl Orange Diffuse Reflectance Spectrum Metal Nitrate Methyl Orange Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviation

MO

Methyl orange

Notes

Acknowledgment

This work is financially supported by the National Natural Science Foundation of China, NNSFC 50574042.

References

  1. 1.
    Holtappels P, Bagger C (2002) J Eur Ceram Soc 22:41CrossRefGoogle Scholar
  2. 2.
    Nagaev EL (2001) Phys Rep 346:387CrossRefADSGoogle Scholar
  3. 3.
    Giannakis AE, Ladavos AK, Pomonis PJ (2004) Appl Catal B 49:147CrossRefGoogle Scholar
  4. 4.
    Spinicci R, Faticanti M, Marini P et al (2003) J Mol Catal A 197:147CrossRefGoogle Scholar
  5. 5.
    Cimino S, Pirone R, Lisi L (2002) Appl Catal B 35:243CrossRefGoogle Scholar
  6. 6.
    Uskokovic V, Drofenik M (2007) Mater Des 28:667Google Scholar
  7. 7.
    Bell RJ, Millar GJ, Drennan J (2000) Solid State Ionics 131:211CrossRefGoogle Scholar
  8. 8.
    Choudhary VR, Banerjee S, Uphade BS (2000) Appl Catal B 197:183CrossRefGoogle Scholar
  9. 9.
    Hwang HJ, Awano M (2001) J Eur Ceram Soc 21:2103CrossRefGoogle Scholar
  10. 10.
    Mali A, Ataie A (2005) Scr Mater 53:1065CrossRefGoogle Scholar
  11. 11.
    Yue ZX, Guo WY, Zhou J et al (2004) J Magn Magn Mater 270:216CrossRefADSGoogle Scholar
  12. 12.
    Liu XJ, Li HL, Xie RJ et al (2007) J Lumin 124:75CrossRefGoogle Scholar
  13. 13.
    Xiao Q, Si ZC, Yu ZM et al (2007) Mater Sci Eng B 137:189CrossRefGoogle Scholar
  14. 14.
    Sun J, Zhang ZH, Cao XH (2007) Solid State Phenom 121–123:967CrossRefGoogle Scholar
  15. 15.
    Predoana L, Malic B, Kosec M et al (2007) J Eur Ceram Soc 27:4407CrossRefGoogle Scholar
  16. 16.
    Ponce S, Fierro JLG (2000) Appl Catal B 24:193CrossRefGoogle Scholar
  17. 17.
    Choso T, Tabata K (1997) J Solid State Chem 129:60CrossRefGoogle Scholar
  18. 18.
    Nagabhushana BM, Chakradhar RPS, Ramesh KP et al (2007) Mater Chem Phys 102:47CrossRefGoogle Scholar
  19. 19.
    Chakrabarti N, Maiti HS (1997) Mater Lett 30:169CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Yuanyuan Li
    • 1
  • Shanshan Yao
    • 1
  • Lihong Xue
    • 1
  • Youwei Yan
    • 1
  1. 1.State Key Laboratory of Materials Processing and Die and Mould TechnologyHuazhong University of Science and TechnologyWuhanPeople’s Republic of China

Personalised recommendations