Skip to main content
Log in

Microstructural studies of self-supported (1.5–10 μm) Pd/23 wt%Ag hydrogen separation membranes subjected to different heat treatments

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The microstructure of self-supported 1.5–10-μm thick Pd/23 wt%Ag membranes grown by magnetron sputtering have been studied after heat treatment and hydrogen permeation tests using electron microscopy and synchrotron X-ray diffraction. After hydrogen flux stabilization and permeance measurements at 300 °C, the membranes were annealed in air at 300 °C or in N2/Ar at 300/400/450 °C for 4 days and then tested for hydrogen permeation. The permeation results show that changes in permeability depend on the treatment atmosphere and temperature, as well as membrane thickness. Air treatment at ~300 °C generally induced a positive effect on permeation in the thickness range of 1.5–10 μm. Significant microstructural changes, including grain growth, strain relief, void formation, and growth of nodules occurred in the membranes. The changes in microstructure are more severe for the thinner membranes, and may be attributed mainly to the oxidation processes at or near the surface. For samples annealed in N2/Ar, enhanced permeation was only obtained with treatment at ~450 °C for 5 and 10 μm. The changes in the microstructure generally increased with heat-treatment temperature, and decreased with membrane's thickness. The membrane with enhanced permeation was accompanied by significant grain growth, strain relief, and surface roughening. For all the membranes, the relative changes in the microstructure were substantially more prominent on the permeate surface than on the feed surface. Details of the analysis are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Sahaym U, Norton MG (2008) J Mater Sci 43(16):5395. doi:https://doi.org/10.1007/s10853-008-2749-0

    Article  CAS  Google Scholar 

  2. Muradov NZ, Veziroglu TN (2008) Int J Hydrogen Energy 33(23):6804

    Article  CAS  Google Scholar 

  3. Grashoff GJ, Pilkington CE, Corti CW (1983) Platinum Met Rev 27(4):157

    CAS  Google Scholar 

  4. McLeod LS, Degertekin FL, Fedorov AG (2007) Appl Phys Lett 90(26):261905-1

    Article  CAS  Google Scholar 

  5. Ward TL, Dao T (1999) J Membr Sci 153(2):211

    Article  CAS  Google Scholar 

  6. McCool BA, Lin YS (2001) J Mater Sci 36(13):3221. doi:https://doi.org/10.1023/A:1017938403725

    Article  CAS  Google Scholar 

  7. Yao J, Cahoon JR (1991) Acta Metall Mater 39(1):119

    Article  CAS  Google Scholar 

  8. Bryden KJ, Ying JY (2002) J Membr Sci 203(1–2):29

    Article  CAS  Google Scholar 

  9. Yao J, Cahoon JR (1991) Acta Metall Mater 39(1):111

    Article  CAS  Google Scholar 

  10. Janßen S, Natter H, Hempelmann R, Striffler T, Stuhr U, Wipf H, Hahn H, Cook JC (1997) Nanostruct Mater 9(1–8):579

    Article  Google Scholar 

  11. Kirchheim R (1981) Acta Metall 29(5):835

    Article  CAS  Google Scholar 

  12. Tucho WM (2009) PhD Thesis, Norwegian University of Science and Technology, pp 59–79

  13. Okazaki J, Ikeda T, Pacheco Tanaka DA, Suzuki TM, Mizukami F (2009) J Membr Sci 335(1-2):126

    Article  CAS  Google Scholar 

  14. Xomeritakis G, Lin Y-S (1998) AIChE J 44(1):174

    Article  CAS  Google Scholar 

  15. Mejdell AL, Klette H, Ramachandran A, Borg A, Bredesen R (2008) J Membr Sci 307(1):96

    Article  CAS  Google Scholar 

  16. Bredesen R, Klette H (2000) Method of manufacturing thin metal membranes. US Patent 6,086,729

  17. ESRF Station Bending Magnet 1B (BM1B) [cited 15-10-2008]

  18. Delhez R, de Keijser TH, Langford JI, Louer D, Mittemeijer EJ, Sonneveld EJ (1995) In: Young RA (ed) The Rietveld method. Oxford Univ. Press, Oxford

    Google Scholar 

  19. Balzar D, Audebrand N, Daymond MR, Fitch A, Hewat A, Langford JI, Le Bail A, Louer D, Masson O, McCowan CN, Popa NC, Stephens PW, Toby BH (2004) J Appl Crystallogr 37(6):911

    Article  CAS  Google Scholar 

  20. Larson AC, Dreele RBV (2004) General structure analysis system (GSAS), Los Alamos National Laboratory report 1985–2004. Los Alamos National Laboratory, Los Alamos

  21. McCusker LB, Von Dreele RB, Cox DE, Louer D, Scardi P (1999) J Appl Crystallogr 32(1):36

    Article  CAS  Google Scholar 

  22. Karen P, Woodward PM (1998) J Solid State Chem 141:78

    Article  CAS  Google Scholar 

  23. Mekonnen W, Arstad B, Klette H, Walmsley JC, Bredesen R, Venvik H, Holmestad R (2008) J Membr Sci 310(1–2):337

    Article  CAS  Google Scholar 

  24. Brandon DG, Kaplan WD (1999) Microstructural characterization of materials, vol XIII. Wiley, Chichester, p 20

  25. Hurlbert RC, Konecny JO (1961) J Chem Phys 34(2):655

    Article  CAS  Google Scholar 

  26. Dittmeyer R, Höllein V, Daub K (2001) J Mol Catal A: Chem 173(1-2):135

    Article  CAS  Google Scholar 

  27. Musket RG (1976) J Less Common Metals 45(2):173

    Article  CAS  Google Scholar 

  28. Elkina IB, Meldon JH (2002) Desalination 147(1-3):445

    Article  CAS  Google Scholar 

  29. Mejdell AL, Jøndahl M, Peters TA, Bredesen R, Venvik HJ (2009) J Membr Sci 327(1–2):6

    Article  CAS  Google Scholar 

  30. Thompson CV, Carel R (1995) Mater Sci Eng B 32(3):211

    Article  CAS  Google Scholar 

  31. Ramachandran A (2009) PhD Thesis, Norwegian University of Science and Technology, pp 51–71

  32. Shu J, Bongondo BEW, Grandjean BPA, Adnot A, Kaliaguine S (1993) Surf Sci 291(1-2):129

    Article  CAS  Google Scholar 

  33. Porter DA, Easterling KE (1991) Phase transformations in metals and alloys. Chapman & Hall, London

    Google Scholar 

  34. Gianola DS, Cheng CEXM, Hemker KJ (2008) Adv Mater 20(2):303

    Article  CAS  Google Scholar 

  35. Koch CC, Scattergood RO, Darling KA, Semones JE (2008) J Mater Sci 43:7264. doi:https://doi.org/10.1007/s10853-008-2870-0

    Article  CAS  Google Scholar 

  36. Uemiya S (1999) Sep Purif Rev 28(1):51

    Article  CAS  Google Scholar 

  37. Huang M, Wang Y, Chang YA (2004) Thin Solid Films 449(1-2):113

    Article  CAS  Google Scholar 

  38. Thompson CV (1990) Annu Rev Mater Sci 20:245

    Article  CAS  Google Scholar 

  39. Rohrer GS (2005) Annu Rev Mater Res 35:99

    Article  CAS  Google Scholar 

  40. Shugurov AR, Panin AV, Chun H-G, Loginov VA (2005) Science and technology, 2005. KORUS 2005. Proceedings. The 9th Russian-Korean international symposium on

  41. Vlasov NM, Fedik II (2002) Int J Hydrogen Energy 27(9):921

    Article  CAS  Google Scholar 

  42. Vlasov NM, Fedik II (2003) Metal Sci Heat Treat 45(7):328

    Article  CAS  Google Scholar 

  43. Dutton R (1984) Int J Hydrogen Energy 9(1–2):147

    Article  CAS  Google Scholar 

  44. O’M Bockris J, Minevski ZS (1998) Int J Hydrogen Energy 23(12):1079

    Article  Google Scholar 

  45. Gegner J, Hörz G, Kirchheim R (2009) J Mater Sci 44:2198. doi:https://doi.org/10.1007/s10853-008-2923-4

    Article  CAS  Google Scholar 

  46. Aggarwal S, Monga AP, Perusse SR, Ramesh R, Ballarotto V, Williams ED, Chalamala BR, Wei Y, Reuss RH (2000) Science 287(5461):2235

    Article  CAS  Google Scholar 

  47. Bucur RV, Ersson NO, Tong XQ (1991) J Less Common Metals 172–174(Part 2):748

    Article  Google Scholar 

  48. Gao H, Lin YS, Li Y, Zhang B (2004) Ind Eng Chem Res 43(22):6920

    Article  CAS  Google Scholar 

  49. Mingmei W, Paul GS (1988) In: Raymond L (ed) Hydrogen embrittlement. ASTM International, Newport Beach

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Holmestad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tucho, W.M., Venvik, H.J., Walmsley, J.C. et al. Microstructural studies of self-supported (1.5–10 μm) Pd/23 wt%Ag hydrogen separation membranes subjected to different heat treatments. J Mater Sci 44, 4429–4442 (2009). https://doi.org/10.1007/s10853-009-3671-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3671-9

Keywords

Navigation